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Abstract

Strategic behavior o�en diverges from Nash-equilibrium, in particular

in unexperienced play. I provide data from a class of simple discoordina-

tion games and show that none of the popular models of behavioural game

theory predicts the predominant aggregate choice pa�ern. And yet, Noisy

Introspection (Goeree and Holt, 2004) readily accounts for about half of the

individual observations. �e reason for the apparent paradox and the mis-

match of the aggregate data and the models is a disregarded behavioural

type that makes up about 25% of the population. �ese 25% hold beliefs

that peak in the centre of the option set and that are roughly symmetric.

In addition, the players show a more heuristic process translating their be-

lief into actions, as their choices cannot be explained readily by quantal

responding. �e behavioural pa�ern of a ‘centered belief’ in connection

with boundedly-rational decision-making is present also in another promi-

nent game from the literature on behavioural game theory, the 11–20 game.

Finally, I show that classifying players as ‘heuristic centered-belief types’

by one game’s beliefs has predictive power for behaviour in the other game.
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1 Introduction

Many interactions inmodern societies happen between strangers, and even longer
relationships have to start at some point. �us, understanding interactions that
do not have a history is of considerable importance, and for this reason, there is
a substantial body of literature studying strategic behavior in one-shot interac-
tions (e.g., Crawford et al., 2013). �is research has shown that strategic behavior
o�en diverges from Nash-equilibrium. By now, scholars of behavioral game the-
ory have found an explanation for virtually all instances where behavior diverges
from Nash. �is paper shows that despite these achievements, none of the popu-
lar models is able to predict the predominant aggregate data pa�ern from a class
of simple discoordination games, even though Noisy Introspection (Goeree and
Holt, 2004) accounts for the individual behaviour of slightly more than 50% of
the population.1

�e reason for the failure to predict the aggregate pa�ern is that the models
miss an important behavioural type which I call heuristic centered-belief player.
�e behavioural type is characterised by a roughly symmetric belief that puts the
highest probability mass on the opponent’s ‘central’ option, as well as a response
to their beliefs that clearly diverges from quantal-responding. In the discoordi-
nation game, the type breaks the monotonicity predicted by Nash and leads to
strong di�erences in expected payo�s of the available options (in contrast to
zero-di�erences under Nash). However, hardly any participant anticipates these
di�erences correctly, so that only some 10% report a belief for which the best-
response coincides with the empirical best-response to the population.

�e paper’s focal game in its standard form is very simple:

Please choose one of the following payo�s, [27, 30, or 33]. You receive

the payo� you choose, but only if the other player chooses a di�erent

payo� than you. Otherwise, you receive nothing.

�is game is a standard 3×3 normal-form game that mirrors the basic char-
acteristics of economically relevant situations. For example, think of two similar
�rms which have to decide on which of three di�erent markets they want to en-
ter, or which of three di�erent types of product they want to sell. In addition,
suppose they know there will be Bertrand-competition a�erwards if they choose
the same market, and monopoly rents if they enter di�erent markets.

In the absense of any coordination device, scholars typically look for a sym-
metric Nash equilibrium as their benchmark. In the case of the discoordination
game above, the unique symmetric Nash equilibrium has both players choose 27,

1I brie�y describe all considered models in Section 4.
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30, and 33 with probabilities of 26%, 34%, and 40%, respectively.2 �e frequencies
I observe when running the game with 168 participants are 31%, 21%, and 48%.

As pointed out above, deviations from Nash-equilibrium should come as no
surprise in such a one-shot environment. In case of such a deviation, however, we
should expect the deviation to be captured by at least one of the popular alterna-
tive models suggested by behavioural economics. And yet, note that the standard
quantal-response-equilibrium, cognitive-hierarchy, level-k, salience-theory, and
impulse-balance-equilibrium models also predict monotonic pa�erns. Team-
reasoning brings us back to the symmetric Nash equilibrium, too, because there
is no way of distinguishing the players and coordinating players’ responses.
Interestingly, when I surveyed 80 experimental economists recruited through
the Economic Science Association’s discussion mailing list, only 14 predicted a
monotonically increasing pa�ern. 16 predicted the type of non-monotonicity
I observe, though in sometimes extreme versions, like 50-0-50. 18 predicted a
monotonically decreasing pa�ern, and the mode—32 respondents—predicted an
inverted-U pa�ern.

In this paper, I present the data of the baseline game presented above to-
gether with 17 additional treatment variations, to test the robustness of my �nd-
ings with respect to a whole number of experimental parameters. In all 18 treat-
ments, the second-highest payo� is chosen less o�en than in the symmetric Nash
equilibrium. Moreover, 13 of the 18 experiments yield the particular type of non-
monotonic pa�ern described above, where the modal choice is the highest payo�
but the second-highest payo� is chosen less o�en than the third-highest one. In
a 14th case (a variant with 5 options), it is the third-highest payo� that is cho-
sen less o�en than the fourth-highest payo�. �e remaining 4 treatments show
monotonic pa�erns, and in contrast to the experimental economists’ modal pre-
diction, no treatment yields the ‘opposite’ non-monotonicity of an inverted-U
pa�ern.

A treatment with an incentivised elicitation of participants’ reasoning re-
veals that participants have a “reasonable argument” for over-playing the lowest
option in the baseline game. 41% of those who are in favour of choosing the
lowest of the three amounts explicitly mention “safety” in justifying their pre-
ferred choice. �is argument is virtually absent in justi�cations of other choices,
in which only 4% refer to “safety”—but about 20% to “going for the risk”, albeit
in more varied ways.

2�ere are also two types of asymmetric equilibria, one in which one player chooses “33” and
the other chooses “30”, and another type in which both players mix, with probabilities ( 10

11
, 0, 1

11
)

and (0, 9

11
, 2

11
). However, as there is no way of breaking the symmetry, I discard them as implau-

sible. Note that no convex combination of the empirical distributions that would result from the
di�erent equilibria would yield the non-monotonicity I observe. If at all, we would observe the
opposite type of non-monotonicity (where “30” would be the modal choice).
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A belief-elicitation treatment sheds more light on the data. While only one
third of those choosing either of the lower payo�s play optimally given their
elicited belief—compared to 81% of those choosing the highest option—neither
group acts in a completely irrational way. If participants deviate from their op-
timal choice, they almost always deviate to the option with the second-highest
expected payo� (in 83% of the cases). And interestingly, this happens to be 27
for 56% of those deviating from 33 (while all of the deviations from 30 go to 33,
and 3/4 of those deviating from 27 choose 33).

What this means: even though many people argue as if they were cognitive-
hierarchy level-2—“everybody else will be choosing the upper two payo�s”—it’s
not a “clean” cognitive-hierarchy reasoning, as the high number of 27s is due
to choices that are not best-responses to their beliefs. It is not a pure quantal-
response-equilibrium reasoning, either, as that would produce even stronger
monotonicity than the symmetric Nash-equilibrium. It is not even non-equilibrium
quantal-response behaviour, even though most suboptimal choices are next-best
choices: ��ing quantal responses given the reported beliefs yields a strongly
monotonic prediction, which also is more extreme than the equilibrium pa�ern.

Noisy introspection (NI)—being a combination of a cognitive-hierarchy-type
model with quantal responses—does not provide a satisfying explanation, either.3

In the calibrated variant of Goeree et al. (2018), the model predicts the non-
monotonic pa�ern for 5 out of the 14 treatments that lead to non-monotonic
choice pa�erns. Maximum-likelihood �ts of experiment-wise ��ed data-sets
produce non-monotonicities for the same number of treatments.

A cluster analysis of the beliefs data shows why. While roughly half of the
participants can be classi�ed as having NI-1, NI-2, or NI-3 beliefs, the other half
cannot. Among this second half, there is a robustly-classi�ed cluster of about
25% of the whole population who exhibit a form of the central-tendency bias (see,
for example, Crose�o et al., 2020, and references cited therein). �ese ‘heuristic
centered-belief players’ show the above-mentioned single-peaked and roughly
symmetric beliefs. �ey choose 27 particularly o�en, and excluding them from
the data would result in a monotonic aggregate data pa�ern.

Heuristic centered-belief players are present also in a data set on the 11–20
game provided by Goeree et al. (2018), but only when the options follow their
natural order.4 �ere are no centered-belief players in treatments in which the
order of options is perturbed (19–18–17–…—12–11–20 and 14–13–12–11–19–18–
17–16–15–20). Again, the centered-belief players’ behaviour di�ers markedly
from other participants’ behaviour, accounting for 50-67% of all—non-optimal—

3Combining quantal responses with the cognitive-hierarchy model rather than with level-k
(as in noisy introspection) �ts the data worse.

4In the 11–20 game, players obtain the amount they request between 11 and 20 currency units,
plus a bonus of 20 units in case they request exactly 1 unit less than their opponent.
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choices below 17, even though they make up for only 8-17% of the population.
In a �nal treatment variation, I test whether heuristic centered-belief play is

a strategy that people sometimes adopt when playing games like the ones stud-
ied here or whether heuristic centered-belief players are a type of person who
routinely use such a strategy accross situations. In particular, I let participants
play a 17–20–23 game, ask for their beliefs in that game, and then let them play
the 11–20 game. I run the same cluster analysis as before on the 17–20–23 be-
liefs, categorising participants into centered-belief players and other players, and
then look at the two groups’ behaviour in the 11–20 game. �e centered-belief
players again are much more likely to choose an action below 17 compared to
all other players, in this case, by a factor of three. Hence, I again �nd a fraction
of roughly 25% heuristic centered-belief players (who produce a non-monotonic
pa�ern, choosing “17”, “20”, and “23” with relative frequencies of 28%, 12%, and
60%, respectively). And second, heuristic centered-belief play seems to be a strat-
egy that a certain part of the population applies across games.

Looking at the broader picture, this paper does a number of things: it estab-
lishes the existence of a neglected behavioural type. It shows that the type exists
not only in extremely contrieved games but in very standard games like discoor-
dination games and the 11–20 game. Also, the type is unlikely to be a spurious
�nding, as it exists in several di�erent games, and as people showing the type
behave in a distinct way both when reporting beliefs and when taking actions,
which on top can be documented across games.

More generally, the paper suggests that the literature typically has focused
too much on ‘homogeneous’ models which may contain di�erent types, but
where, by and large, all types follow the same type of logic (as, for example,
in cognitive-hierarchy-type models). Future research still will need to specify
the exact conditions of when the type will show and what the exact mechanism
is behind their choices. However, my paper suggests that both explaining and
predicting behaviour in related games needs to account for a fraction of heuristic
centered-belief players.

2 Related literature

�is paper contributes to three strands of literature. First, there is a large and
growing literature on strategic reasoning in one-shot games (for an introduction,
cf., Crawford et al., 2013). In most of this literature, there is a particular model of
behavioural game theory that explains behaviour best, but the best-performing
model di�ers between papers (and sometimes, even within papers, as in Bardsley
et al., 2010). In this sense, my paper falls into the same category as, for example,
Goeree et al. (2018), showing that noisy introspection accounts for the behaviour
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of a substantial part (one half) of the population particularly well.
However, my paper also shows that participants’ aggregate response pa�ern

(and a non-negligible sub-population’s individual response pa�erns) cannot be
explained readily by any of the popular models of behavioural game theory. In-
stead, behaviour is governed by a more heuristic decision-making procedure. In
this sense, the paper is related to papers like Apesteguia et al. (2007) or Eliaz and
Rubinstein (2011), who show that in certain situations, simple decision rules may
explain behaviour best. Within this literature strand, closely-related papers are
Crose�o et al. (2020), Wol� (2021), and Sontuoso and Bhatia (2021).

Crose�o et al. (2020) have their participants bid for an object with known
value in a two-player auction against a computer player whose bid is determined
by uniform randomisation. A�er that, participants have to indicate the proba-
bilities with which the computer’s bid falls into one of �ve evenly-sized bins of
possible bids. Even though the computer’s uniform-randomisation strategy is
known to participants, a majority reports “beliefs that have a peak in the interior
of the range”. My study adds to the �ndings of Crose�o et al. (2020) in several
ways. I distinguish ‘centered-belief players’ from other participants whose be-
liefs have a peak in the interior but are clearly asymmetric. I further document
some limits to the phenomenon, as it does not seem to be present when actions
do not appear in their natural order. Most importantly, I relate participants’ be-
liefs to their actions.5 In particular, I show that ‘centered-belief players’ di�er
qualitatively in their behaviour from the rest of the population, that this di�er-
ing behaviour a�ects the overall data pa�ern in two di�erent games, and that
the types’ strategies in the two games are correlated within-participants.

Wol� (2021) studies symmetric pure discoordination games in which partic-
ipants’ pure strategies can be distinguished only by their labels and positions.
�e study �nds that participants play the pure discoordination games as if they
were giving up on reasoning strategically and be�ing on one of the strategies.6

Similarly, Sontuoso and Bhatia (2021) study coordination games and hide-and-
seek games in which options are denoted by natural-language words. �ey show
that players o�en choose actions with a frequently-used word as a label when
they have an incentive to match their opponent’s action. In contrast, players
who have to mismatch their opponent’s action rely less on actions that have a
frequently-used word as a label.7 I explicitly vary the salience of the options be-

5Crose�o et al. (2020) report only that actions and beliefs are correlated between participants.
6Note that—unsurprisingly—this explanation fails to account for the data presented in this

paper (Wol�, 2021, proposes that agents resort to be�ing-like behaviour only in case strategic
thinking leads to the conclusion that any option is as good as any other, which will not be the
case here). If participants have to bet on “27 €”, “30€”, or “33€”to receive a prize of 10 Euros in
case a random draw selects the same option, 18% bet on 27, 38% bet on 30, and 44% bet on 33.

7See, e.g., Mehta et al. (1994), Bardsley et al. (2010), Faillo et al. (2017), or van Elten and
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tween treatments, without any apparent e�ects on the resulting behaviour. In
that sense, the monetary incentives seem to be strong enough to dominate any
‘prominent-number e�ects’.

�e second literature strand looks at the stability of behaviour across dif-
ferent games, as, for example, in Georganas et al. (2015) or Rubinstein (2016).
Georganas et al. (2015) show that participants exhibit li�le stability in terms of
their estimated level-k types across two families of games.8 In contrast, Rubin-
stein (2016) �nds positive correlations between a whole range of games in terms
of ‘decision styles’: the fraction of a participant’s “contemplative” choices in col-
lections of nine games in most cases is predictive of the same participant’s choice
in a tenth game. Similarly, my �ndings also suggest that decision strategies may
not be that di�erent between games. Identifying ‘centered-belief players’ in a
se�ing where players want to coordinate on di�erent actions is predictive for
choices in a se�ing where players bene�t hugely from outsmarting the other
player (and where there always is at least one player who would want to deviate
from her action ex-post).

Last but not least, the paper contributes to the literature studying competitive
situations in which collusion would be bene�cial. �is literature centers around
se�ings in which �rms are active in the same market and studies topics such as
communication, the number of �rms, or the particular market mechanism (Haan
et al., 2009). My paper studies a stylised se�ing in which �rms want to divide a
market amongst themselves by o�ering diversi�ed products or several markets
when these markets yield unequal monopoly rents. �us, rather than looking
at a homogenous good and price or quantity choices, one could think about the
se�ing in this paper as being equivalent to �rms choosing tomarket homogenous
goods in di�erent markets or endogenously-heterogeneous goods with a known
Bertrand pricing strategy a�erwards.

3 Experimental design and setups

As stated in the introduction, I ran 18 treatment variations on the basic discoor-
dination game. In the game, players obtain the amount they request as long as
their opponent requests a di�erent amount. �e initial focus of the study was
a comparison of the baseline treatment with the game by Berger et al. (2016).
In their game, there are many players who have to choose one of three avail-
able payout amounts. �e amount chosen by the lowest number of players is the
“winning amount”, and one player would be drawn for payment from the group
of players who chose the winning amount.

Penczynski (2020) for studies on strategic reasoning in coordination games.
8See Cooper et al. (2018) and Hyndman et al. (2022) for similar results.
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Because the project started as an exploratory exercise, the initial treatments
were added to unrelated experiments. Having seen the surprising data pa�ern in
the baseline treatment, I started exploring the �nding’s robustness in a variety
of treatments. To keep things comparable, I kept running the treatments as an
extra task in unrelated experiments for most treatments. To test whether this
arrangement was driving the results, I also ran treatments as the �rst or even
the only part of experimental sessions. �is was the case in 5 of the 18 data sets
of Table 1. In addition, the game was the second main part of the experiment in
the team version with options 40-44-48 (out of two, a�er an unrelated one-shot
public-good task played with a di�erent opponent).

�e �rst round of robustness checks focused on the numbers themselves.
�ese treatments would not have “30” as the middle option, or increase the dif-
ferences between payo�s. �en, I ran two treatments where all pairs of partici-
pants would be paid rather than only one randomly selected couple. Paying all
participants meant reducing the prizes for budget reasons. �is was followed by
a number of treatments with more options, and online replications conducted on
Ariel Rubinstein’s website h�p://gametheory.tau.ac.il/ using hypothetic payo�s,
very large payo� di�erences, and (mostly) former students from his game-theory
courses.

As part of another study (Bauer and Wol�, 2018), I also ran sessions on two
variants of the game in which participants would play the same game simulta-
neously with all other participants in their session, with the restriction that they
had to choose the same action in all the games. �e di�erence between the vari-
ants was how the gamewas presented. In an ‘opponent frame’, the setupwas pre-
sented as a two-player game �rst, followed by the explanation that participants
would play the two-player game against all others in the session simultaneously
(being paid their average payo�). In a ‘population frame’, in contrast, they were
told that they would be paid their chosen amount for every other participant in
the session who chose a di�erent amount, divided by the number of participants
in the session.

I further conducted an experiment using 2-player teams as a means to in-
centivise the disclosure of participants’ reasoning. �e approach, pioneered by
Burchardi and Penczynski (2014), rests on the idea of le�ing one team mem-
ber suggest an action for the game and write a justifying message to the other
member who then takes the �nal decision for the whole team. To economise
on research money and participants, it is not revealed who in the team is the
suggesting player and who is the player making the �nal decision, so that both
players suggest an action and write a message. Importantly, though, the com-
munication along the actual path of play remains a one-way communication.

�is setup yields two types of choices, suggestions and implemented actions
a�er participants have received the suggestions and messages of their fellow
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team member. In terms of choice data, I will focus on the suggestions as they are
unin�uenced by others. Focusing on implemented choices instead would boost
the non-monotonicity of the observed pa�ern of choices strongly.

Finally, letme describe the design features of the treatments inwhich I elicited
beliefs. First, I added a second additional part to two of the initial sessions. In
the sessions, I asked 58 participants of a 27–30–33 treatment to report their esti-
mate of the probabilities with which the other participants would choose each of
the three options. �ey would be paid an additional 2 Euros if their estimates of
others’ behaviour did not di�er for any of the options by more than 2 percentage
points.

�e �nal four sessions I ran had two main parts and the belief-reports part
in between. In the �rst part, the 99 participants would play a 17–20–23 treat-
ment (in points, with a conversion rate of 4 points per Euro). �en, they would
go through the belief elicitation described above, and �nally, they would play
the standard two-player 11–20 game. In the game, each player would obtain the
amount they request unless they ask for exactly 1 point less than their opponent.
If they choose exactly 1 point less than their opponent, they receive an additional
bonus of 20 points. One of the two games would be selected randomly for pay-
ment. �e �nal payo� would consist of the payo� from the selected game and
the belief elicitation, plus a �xed participation fee of 2.50 EUR.

With the exception of the three hypothetic-incentives treatments run on
h�p://gametheory.tau.ac.il/, all sessions were run with the local participant pool
of the LakeLab at the University of Konstanz. I used z-Tree (Fischbacher, 2007)
to programme the experiments, and hroot (Bock et al., 2014) for recruitment. For
the online sessions of the 9–10–11, 17–20–23, and 40–44–48 treatments, I ad-
ditionally had to use z-Tree-unleashed (Duch et al., 2020). Table 1 presents an
overview of all experiments, their particularities, and the data.

4 Predictions

For the predictions, I use the symmetric Nash-equilibrium and the popular mod-
els from behavioural game theory. �e standard (logit) quantal-response-equilibrium,
cognitive-hierarchy, level-k, salience-theory, and impulse-balance-equilibrium
models all predict monotonically-increasing pa�erns. Team-reasoning brings us
back to the symmetric Nash equilibrium, too, because there is no way of distin-
guishing the players and coordinating players’ responses. Only noisy introspec-
tion can account for non-monotonic pa�erns in some cases.
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Options Option 1 Option 2 Option 3 Option 4 Option 5 N.obs. Lab/Online Reason/Particularities Payment

27-30-33 34.5 20.9 44.5 110 lab Baseline treatment pay one pair
27-30-33 24.1 20.7 55.2 58 lab belief elicitation (+ replication) pay one pair
24-27-30 34.6 15.4 50.0 52 lab not having “30” in the middle pay one pair
24-30-36 29.8 23.8 46.4 84 lab increasing the payo� di�erences pay one pair
20-30-40 19.3 18.1 62.7 83 lab increasing the payo� di�erences further pay one pair
5-6-7 17.5 30.0 52.5 40 lab paying all pay all
7-7.5-8 21.2 10.6 68.2 66 lab paying all pay all
9-10-11∗ 17.6 29.4 52.9 85 online benchmark for survey pay all (random part)

17-20-23∗,‡ 24.2 21.2 54.5 99 online predictive power of ‘centered-belief types’ pay all (random part)
6.7-7.2-7.7-8.2 6.9 34.7 13.9 44.4 72 lab increasing the number of alternatives pay all
5-5.5-6-6.5-7 2.1 12.7 17.6 21.8 45.8 142 lab increasing the number of alternatives pay all

6.2-6.7-7.2-7.7-8.2 2.3 9.1 17.0 15.9 55.7 88 lab …without having ‘round’ payments pay all
5.4 – 6.3 – 7.2∗ 25.5 25.3 49.2 308 online ‘replication’ amongst GT students no payment
6000-7000-8000∗ 27.5 30.0 42.5 209 online …with large di�erences no payment

5000-6000-7000-8000-9000∗ 8.1 16.1 14.4 25.5 36.5 236 online large di�erences, 5 options no payment

27-30-33 38.0 24.1 38.0 108 lab discoordination with everybody, pay one pair
‘population frame’

27-30-33 29.2 14.2 56.6 106 lab discoordination with everybody, pay one pair
‘opponent frame’

40-44-48 28.9 26.3 44.7 76 online discoordination in teams, pay all (random part)
(25.0) (15.8) (59.2) suggestion (decision)

27-30-33 18.4 34.7 46.9 98 lab ‘replication‘ of the Berger et al. game pay the winner

Table 1: Overview of the data. Non-monotonicities are marked in bold-face. ∗�e game was the �rst or only task of the
experiment. ‡�ere was a conversion rate of 4 experimental tokens to 1 Euro.
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Nash-equilibrium. I focus on the symmetric equilibrium (for the focal game,
79/299, 101/299, 119/299) because there is no way of breaking the symmetry for
the players. Just to name them, the asymmetric equilibria are as follows: (a)
one player claims the highest payo�, the other player claims the second-highest
payo�, or (b) one player claims 33 with 2/11 and 30 with 9/11 probability, while
the other player claims 33 with probability 1/11 and 27 with probability 10/11.9

(Logit) �antal-Response Equilibrium. Under a quantal-response equilib-
rium, agents make errors, but the likelihood of the errors decreases in their costs.
Tomodel such behaviour, agents typically are assumed to follow a logistic-choice
function (“quantal response”) in their decisions. �e probability of choosing an
action aj is thus given by:

Pr(aj) =
eλπj(s−i)

∑

k e
λπk(s−i)

,

where πj(s−i) is the (expected) payo� of choosing aj when all other players
choose according to s−i. �e equilibrium then assumes that players mutually
take their noisy choice behaviour into account, so that each player plays a quan-
tal response to the quantal response(s) of the other player(s). �e model has
a single parameter, λ, which measures the degree of rationality (where λ = 0
means uniform randomization and λ → ∞means perfect best-responding). Fig-
ure 1 displays the model’s predictions for the baseline game depending on λ.
As becomes clear from the �gure, the QRE comes closest to a non-monotonic
pa�ern when λ = 0 and all players randomize uniformly.

Level-k. Under a level-k model, participants have di�erent types, so-called
“levels of reasoning”. Level-0 types are assumed to react in an intuitive man-
ner to their set of strategies, not taking into account anything that concerns the
other player. �is may mean that they either randomize uniformly over their
set of strategies, that they pick a particularly salient strategy (such as “YES‼”
in a set that consists of “YES‼”, “maybe”, “perhaps”, and “who knows”), or the
strategy that intuitively suggests the highest payo� (as in the 11–20 game by
Arad and Rubinstein, 2012). Levels k > 0 then always play a best-response to
the corresponding level (k − 1), so that level 1 best-responds to level 0, level 2
best-responds to level 1, and so on. Proponents of level-k commonly assume that
level 0 only exists in agents’ minds. Similarly, very high levels (k > 4 or even
k > 3) are usually excluded because they seem implausible, and proponents of
the level-k model expect the level-distribution to be hump-shaped.

9See �n. 2.
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Figure 1: Logit �antal Response Equilibria as a function of λ. For λ-values
greater than 1, the QRE barely changes and approaches the symmetric Nash-
equilibrium monotonically.

For our game, there are two ‘standard’ ways of modelling level 0. Either, we
assume level 0 to randomize uniformly, or we assume level 0 to pick “33” be-
cause it is particularly salient and at the same time the option that intuitively
suggests the highest payo� like in the 11-20 game.10 If level-0 randomizes uni-
formly, uneven levels choose “33” and even levels choose “30”. If level-0 chooses
“33”, uneven levels choose “30” and even levels choose “33”. In either case, “27”
is never played (or at most by 1/3 of the “non-existent” level-0 types). And in
neither case should the response distribution display a U-shape.

Cognitive Hierarchy. �e cognitive-hierarchy model (Camerer et al., 2004) is
closely related to the level-k model. �e di�erence is that levels k > 0 believe
that the population of other players consist of levels 0 to (k − 1) (rather than
[k − 1] alone), and that this belief follows a truncated Poisson-distribution. To
predict behaviour in new games, the Poisson parameter has been suggested to
be τ = 1.5. Figure 2 displays the predictions as a function of τ . What Figure
2 shows is that the response distribution should not have a U-shape. �e only
non-monotonicity that could be generated (for a τ ≈ 1.1 and a “33”-choosing
level 0) would be a very slight hump-shape.

10We could add a variant under which “30” might be salient because it’s in the middle and a
round number. Doing so would not change the results in any meaningful way.
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Figure 2: Cognitive-hierarchy predictions as a function of τ . τ = 1.5 has been
suggested as a good predictor for new games, and τ > 2 tend to be considered
as implausible.

Salience theory. Salience theory (Bordalo et al., 2012) was conceived origi-
nally for choice under risk. However, given its growing popularity, I also include
it here by calculating a standard Nash-equilibrium for players who act accord-
ing to salience theory. �e central idea is that agents play a best-response to a
distorted version of reality. In particular, it is the probability weights that are
distorted by salience. A state (that is, an action of the other player) is salient for
the player’s own actionwhen the payo� in that state-action combination deviates
strongly from the average payo� of that state:

σ
(

u(aj, ai), uj

)

=
|u(aj, ai)− uj|

|u(aj, ai)|+ |uj|+ ε
,

where u(aj, ai) is the player’s payo� if the opponent chooses his pure strategy
aj and the player chooses ai, uj is the average payo� if the opponent chooses aj
and the player mixes uniformly over her action set, and ε is a small constant that
prevents weird predictions in case |u(aj, ai)|+ |uj| happens to be close to 0.

�e salience weights σ within each action ai (that is, across the opponent’s
action set) are converted into ranks rij (starting at 0 for the most salient state)
which in turn determine the decision weights ωij :

ωij :=
δrijPr(aj)

∑K

k=1 δ
rikPr(ak)

,
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Figure 3: Salience-theory predictions as a function of δ. δ has been estimated to
be around 0.7.

where δ is a rationality parameter that has been estimated at ≈ 0.7. Figure 3
shows the equilibria that result under a salience-theory equilibrium as a function
of δ. Again, the �gure shows that also salience theory predicts a data pa�ern that
monotonically increases in the claimed amount.

Impulse-balance equilibrium. Impulse-balance equilibrium is a concept that
is applicable only to se�ings where actions have a natural order (see, for example,
Selten and Chmura, 2008). �e discoordination games I am studying have such
an order, so that impulse-balance equilibrium is applicable here. �e concept is
based on learning direction theory.

In learning direction theory, agents compare the payo� they got from their
chosen action to the payo�s they might have got under di�erent actions. �en,
agents adjust in the direction of higher payo�s. Impulse-balance equilibrium
uses the idea, proposing that each alternative action ‘emits’ impulses. �ese im-
pulses are in�uenced by the others’ strategies. An impulse-balance equilibrium is
reached when for each player, upward- and downward-impulses exactly balance
out, given the strategies of their opponents.

Chmura et al. (2014) generalise impulse-balance equilibrium to 3×3 games
and apply it to a “Baili� and Poacher Game” in which the “Poacher” wants to
steal �sh from one of three ponds. �e �sh may be di�erently valuable, and
ge�ing caught at either pond is equally bad. Hence, the “Poacher” faces the
same payo� structure as players in the discoordination games I study. �us, I
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can use the Poacher’s impulse-proportionality equation (equation 5 in Chmura
et al.) directly:

qi =
(1− pi)Vi

(1− p1)V1 + (1− p2)V2 + (1− p3)V3

, for i = 1, 2, 3,

where V1 = 27, V2 = 30, V3 = 33, pi is the probability with which the respec-
tive actions are chosen by the other player, and qi is the focal player’s probabil-
ity of choosing the i’th element of {27, 30, 33}. Applying symmetry, qi = pi.
�e resulting system of equations can be solved easily and yields, for example,
(p1, p2, p3) ≈ (0.31, 0.33, 0.36) for the 27–30–33 treatment.

Noisy introspection. Noisy introspection combines quantal-responding with
Level-k, �xing level-0 at uniform randomization (Goeree and Holt, 2004). In par-
ticular, NI -0 mixes uniformly, and any NI -k with k > 0 plays a quantal response
to NI -(k − 1). Following Goeree et al. (2018), levels are assumed to follow a
Poisson-distribution (truncated at the ninth level) with parameter τ . In princi-
ple, the model is able to accommodate the type of non-monotonicity I observe.
Using the parameter estimates in Goeree et al. (2018) for prediction, the model
predicts a non-monotonic pa�ern for �ve out of the 14 non-monotonic treat-
ments (for the four 27–30–33 treatments, the prediction is relatively far o�, with
(p1, p2, p3) ≈ (0.29, 0.28, 0.43), while for the 40–44–48 treatment, it is almost
perfect at (p1, p2, p3) ≈ (0.29, 0.26, 0.46)). Fi�ing the data, this number does
not increase: again, �ve out of the 14 non-monotonic treatments yield a non-
monotonic �t.11

5 Results

I start by focusing on the three-option games �rst, where I observe a U-shape in
11 out of 14 data sets. Abstracting from noisy introspection, the closest proba-
bility distribution to a U-shape that (at least) some of the models accommodate
as a special case is uniform randomization. Under uniform randomization, the
likelihood of observing at least 11 out of 14 U-shaped data sets given the sample
sizes I used is 0.2%. In other words, I can reject even uniform randomization at
the standard signi�cance levels.

To assess whether noisy introspection is able to �t the data su�ciently well,
I generate 100’000 random data sets using the choice probabilities of the ��ed

11�e�ve treatments are two of the 27–30–33 treatments with (p1, p2, p3) ≈ (0.29, 0.27, 0.45)
and (p1, p2, p3) ≈ (0.27, 0.26, 0.47), respectively; the 7–7.5–8 treatment with (p1, p2, p3) ≈
(0.27, 0.23, 0.50); the 6.7–7.2–7.7–8.2 treatment with (p1, p2, p3, p4) ≈ (0.09, 0.25, 0.19, 0.47);
and the 40–44–48 treatment with (p1, p2, p3) ≈ (0.29, 0.26, 0.45).
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noisy introspection model and calculate the mean squared deviation of the ran-
dom data sets and the ��ed probabilities. Next, I calculate the mean squared
deviations of the actual data sets from the ��ed probabilities. Even when I �t
the noisy-introspection model on each treatment individually, only slightly more
than 1% of the 100’000 iterations have a mean squared deviation that is at least as
large as the actual data set. Imposing more structure (such as assuming a com-
mon Poisson parameter across treatments) reduces this simulated p-value even
further. In other words, also the noisy introspection model cannot accommo-
date aggregate behaviour. Having looked at the general data pa�ern across all
(three-option) treatments, let me explore the treatments in a more �ne-grained
way next.

5.1 Robustness checks

�e �rst check was to remove “30” from the center. Changing the options to 24–
27–30 (slightly) increased the non-monotonicity rather than reducing it. Second,
I increased the di�erences from 27–30–33 over 24–30–36 to 20–30–40. While
there is li�le di�erence between the 27–30–33 and the 24–30–36 data, the non-
monotonicity becomes weaker in the 20–30–40 treatment. However, it does not
do so in the expected way: increasing the di�erences does not increase the preva-
lence of “30”-choices in the direction of the theoretic predictions. Instead, there
is a shi� away from the lowest option that in the most extreme (20–30–40) treat-
ment goes entirely to the highest option.

Paying all (for sure) eliminates the non-monotonicity in one of the instances
(5–6–7) but not the other (7–7.5–8). Paying all in case the part is randomly drawn
for payment acts similarly: it eliminates the non-monotonicity in the 9–10–11
case but does not do so in the 17–20–23 case nor the team treatment (40–44–48).

Introducing additional options leads to a similar picture. In two out of three
lab treatments, the distribution exhibits a dip at the second-highest option, and
in the third treatment, the highest available option still is chosen far too o�en
compared to the standard equilibrium prediction.

Using a larger sample of former students of Ariel Rubinstein’s game-theory
courses moves the data closer to a monotonic pa�ern, too. However, in two out
of three treatments, the data still exhibit a non-monotonicity in terms of a dip,
even though in one of them, the dip occurs at the third-highest option.

Finally, the non-monotonicity is not a consequence of conducting the treat-
ments as supplementary parts to other experiments: among the �ve treatments
that had the game as the �rst or only part of the experiment, again three led to a
non-monotonicity.

Summing up, none of the variationswas able to eliminate the non-monotonicity
reliably. I observe a non-monotonicity in 14 out of 18 treatments, and compared
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Figure 4: Average beliefs, by participants’ own choice (numbers of observations
in parentheses).

Actual choice, in (row-wise) percentages
Best response (N. obs.) “27” “30” “33”

“27” (9) 55.6 11.1 33.3
“30” (7) 0 57.1 42.9
“33” (42) 21.4 16.7 61.9

Table 2: Participants’ choice, by the best response to their reported belief.

to the symmetric Nash equilibrium, the second-highest option is ‘under-played’
in all 18 treatments. Similar �ndings hold for the other models except for noisy
introspection; noisy introspection is able to �t a non-monotonic pa�ern in 5 out
of the 18 treatments. �ese observations clearly speak in favour of taking the
general phenomenon seriously. To understand behaviour in games, it o�en is
very helpful to look at beliefs on top of actions. �is is what the next two Sec-
tions are focused on.
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5.2 Best-responses (based on participants’ belief reports)

From 58 participants of a 27–30–33 treatment, I also elicited the beliefs regarding
the other participants’ choices a�erwards.12 Figure 4 shows the average beliefs,
depending on participants’ choices. Contrary to the actual choice pa�ern, the
majority of participants seem to agree that most others will choose “30” (“30”
carries the largest probability mass in the average belief of the ‘27–choosers’ as
well as that of the ‘33-choosers’). If we now look at what participants should have
chosen given their belief, we obtain Table 2. As we can see on the diagonal, 56-
62% of the participants choose a best-response to their belief in terms of expected
payo�s, irrespective of what that best-response might be.

Looking at choices thatwere not best-responses, roughly 30% play their second-
best choice (43% for thosewhose best-response is “30”), and 10% play their ‘worst-
response’ (the �gures cannot be read from Table 2). �ese �gures suggest that,
by and large, participants are acting in agreement with their beliefs, subjects to
decision-errors of a quantal-response/logit-choice type. �is suggests that the
reason for QRE’s failure to predict the data lies in the equilibrium assumption
rather than in the way beliefs translate into actions. And conversely, quantal-
response behaviour seems to be an integral part of the explanation for partic-
ipants’ choices. So far, we have looked at individual belief reports. �e next
session looks at whether there are special types of participants in terms of their
beliefs, to see whether I can relate the belief types to the types from any of the
game theoretic models I considered in Section 4.

5.3 Heuristic Centered-Belief Players

�e cluster analysis of participants’ beliefs reported in Table 3 yields additional
insights. First of all, adding up the �rst three lines (for NI-1, NI-2, and NI-3)
suggests that slightly more than half of the participants’ beliefs correspond to a
type from the noisy-introspection model. Second, looking at lines 4, 5, and 7, just
short of 40% believe that “30” is the choice most others will choose (and about
three quarters if we take the exact �gures in row 1 by their face value). More
importantly, though, almost a quarter of the population can be classi�ed as hav-
ing a ‘centered belief’ - a belief that places the highest probability on the central
option and is (roughly) symmetric around it. And looking at the distribution of
actual choices in columns 5–7, it is the ‘centered-belief players’ who are driving
the non-monotonicity of the overall pa�ern (the only other group exhibiting a

12�eywould be paid an additional 2 Euros if their estimates of others’ behaviour did not di�er
for any of the options by more than 2 percentage points.
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Belief on… Frequency Actual choice
“27” “30” “33” (in %) “27” “30” “33” classi�cation

32.0 35.7 32.3 34.5 4 3 13 ≈ NI-1
18.4 33.7 48.0 13.8 5 2 1 NI-2
41.5 14.8 43.7 5.2 0 2 1 NI-3
22.0 52.0 26.0 22.4 5 1 7 ‘centered belief’
36.7 46.1 17.2 12.1 0 1 6 ?
52.2 24.7 23.1 6.9 0 2 2 ?
7.5 92.5 0 3.4 0 0 2 outlier
98 0 2 1.7 0 1 0 outlier

Table 3: Results of a cluster analysis of participants’ beliefs, alongside the corre-
sponding choice frequencies (best-responses are underlined).

slight dip are the NI-1s).13

To test how relevant the result of a meaningful population of centered-belief
players is, I looked for another data set of a game with a limited number of op-
tions that would have a natural order. �e very obvious candidate was Arad and
Rubinstein’s (2012) 11–20 game in which each player would receive the amount
(s)he requests, plus a bonus of 20 in case the other player chooses exactly one
monetary unit more. Goeree et al. (2018) provide a data set that includes elicited
beliefs for the third game that participants play. In the following Section, I run a
cluster analysis on their data.

5.4 Heuristic centered-belief players in other data sets

Running a cluster analysis on Goeree et al.’s (2018) data from the standard ver-
sion of the 11–20 game (determining the number of clusters again by the SD
index) yields 10 clusters, including a ‘centered-belief’ one. �e cluster comprises
8% of the population; however, this number doubles if we use, for example, 6
clusters as suggested by a number of other indices. Notably, this cluster appears
only in the variant in which the options follow their natural order, but not in two

13Note that 8 clusters is the optimal number of clusters according to SD index (which corre-
sponds to a weighted sum of the average “point sca�ering” within clusters and the inverse of
the total seperation between clusters). Other indices suggest di�erent optimal cluster numbers.
However, the ‘centered-belief’ cluster is the only robust cluster that is always present (tested
for a single cluster all the way to 10 clusters). In addition, the robustness check shows that the
22.4% reported in Table 3 are a lower bound. Table A.6 in the Appendix shows the proportions
of participants whose beliefs are classi�ed as ‘centered beliefs’ for di�erent numbers of clusters.
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“11” “13” “15” “16” “17” “18” “19” “20”

Centered-belief players (n = 6) 0 0 67 33 0 0 0 0
Other types (n = 66) 2 2 3 3 23 36 23 9

Table 4: Choice percentages in the standard (round-3) 11–20 game by belief clus-
ter (beliefs were elicited only for round 3).

treatments in which the order is perturbed (19–18–17–…–12–11–20 and 14–13–
12–11–19–18–17–16–15–20). �is means that options being naturally ordered
seems to be a pre-condition for participants to come up with ‘centered beliefs’.

Again, the centered-belief players exhibit a rather peculiar choice pa�ern, as
can be seen from comparing the �rst row of Table 4 with all other rows. Strik-
ingly, all choices from centered-belief players are below 17 (representing 50% of
all such choices; recall that they make up for only 8% of the population; using the
above-mentioned 6 clusters, the numbers would go up to 17% of the population
making up for 2/3 of the choices below 17). In contrast, slightly less than 10% of
the choices of other players are below 17. 14 Note that these choices are clearly
dominated: judging by the (clustered) belief, the optimal choice of 19 yields a
payo� (20.5) that surpasses the most common choice in that group, 15 (payo�:
18.1), by almost 2.5, whereas the numbers 17 and above all yield payo�s of at
least 19.1. �is means that in the 11–20 game, centered-belief players clearly do
not follow the general quantal-response pa�ern.

Having found the centered-belief type in two di�erent games, I set out to
test the robustness of the �ndings in a new experiment, and whether classifying
participants as centered-belief players in one game is predictive of their choices
in the other. �e following Section shows that this indeed is the case.

5.5 Centered-belief play as a general strategy

To analyse the out-of-game predictive power of the centered-belief-player cate-
gorisation, I ran four sessions with two parts. �e �rst part is a 17–20–23 treat-
ment with belief-elicitation and the second part is the 11–20 game.15 �e hy-
pothesis to be tested was that participants classi�ed as centered-belief players

14A Boschloo test on whether choices below 17 are equally prevalent among centered-belief
players and other types yields p < 0.001. Focusing on choices only from the �rst round of play
in their setup, the 8% centered-belief players still account for one third of the choices below 17.

15�e sessions lasted for only about 20 minutes, and so I used an exchange rate of 4 points per
Euro. If the �rst part was selected randomly, participants would get a �xed fee of 2.50 Euros on
top of their earnings.
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“13” “14” “15” “16” “17” “18” “19” “20”

Centered-belief players (n = 24) 4 8 0 17 8 46 13 4
Other types (n = 74) 0 1 1 7 18 49 16 8

Table 5: Choice percentages in the standard 11–20 game, by belief cluster from
the 17–20–23 treatment.

by their beliefs in the �rst game would again make up for a disproportionally
large share of the choices below 17 in the 11–20 game. Recall that in Goeree
et al.’s data, ‘11–20-game centered-belief players’ made up for 8%(-17%) of the
population but for 50%(-67%) of the choices below 17.

Table 5 presents the results for the across-game analysis. While the e�ect is
weaker, it clearly remains present: centered-belief players are more than 3 times
as likely to choose a number below 7 compared to all other participants (29% as
opposed to 9%), again making up for 50% of all such choices.16 �e �ndings show
two things. First, I again �nd a substantial fraction of centered-belief players
(that is very similar in size to what I observed among the 58 earlier participants)
who produce a non-monotonic pa�ern, choosing “17”, “20”, and “23”with relative
frequencies of 28%, 12%, and 60%, respectively. And second, in the sense of the
tested hypothesis, reporting a ‘centered belief’ in one game has predictive power
for behaviour in another.

Before running the cluster analyses on participants’ beliefs reported in the
preceding Section, I ran three additional sessions of a team treatment aimed at
incentivising reports of strategic reasoning, with a total of 76 participants. While
the results are not very informative about the distinction between centered-belief
players and other types, they provide an additional perspective on participants’
reasoning. I therefore include a brief description on the data in the following
�nal results Section.

5.6 Another glimpse into players’ minds: team communi-

cation

Following Burchardi and Penczynski (2014), the game was played in pairs. In
each pair, there is a suggesting player and a deciding player. �e suggesting
player suggests an action in the game and writes a free-form message that is

16A Boschloo test on whether choices below 17 are equally prevalent among centered-belief
players and others yields p = 0.03. Note that I had to drop one out of 99 participants because
due to a programming error, the participant managed to get past the screen of the 11–20 game
without making a choice.
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transferred to the deciding player alongside the suggested action. �e deciding
player sees both the suggestion and the message before deciding on the team’s
action, which gives the suggesting player an incentive to give a compelling ar-
gument for why the suggested action is a good choice.

Also following Burchardi and Penczynski (2014), I use the strategy method
with respect to the player roles to save on participants (i.e., both members of the
team might be assigned either role and thus have to both supply a suggestion
and a message and make a �nal decision a�er seeing their partner’s message;
importantly, along the path of action, communication remains one-way).17 �e
actions in the game were 40, 44, and 48, which were to be split between the two
teammembers in case the teamwas successful. At the end of the session, payo�s
were converted into Euros at a rate of 2 points per Euro, and there was a show-up
fee of 5 Euros.

As reported in Table 1, 29%, 26%, and 45% suggested 40, 44, and 48, respec-
tively (the team decisions were 40, 44, and 48 with probabilities of 25%, 16%, and
59%). More importantly, though, 41% of those who suggest 40 explicitly mention
“safety” in their messages. �is consideration is virtually absent in others’ ex-
planations: only 4% of those who suggest 44 or 48 refer to “safety” (and another
4% to being “careful”). In contrast, 19% refer to “going for the risk” (although in
more varied terms including “All in” or “No risk no fun”), which is absent in the
former group’s messages.

�e notion of the lowest option being “safe” clearly suggests a belief that
everybody else will be choosing either 44 or 48–which would correspond to a
level-2 player in Level-k based on a level-0 that chooses by the option suggesting
the highest payo� (Arad and Rubinstein’s, 2012, argument for using “20” as the
level-0 choice in their 11–20 game), or an NI-2 player in the noisy-introspection
model. Note, however, that this observation does not square upwith the numbers
from the cluster analysis on reported beliefs: According to Table 3, clearly less
than 20% belong to a belief cluster that would suggest “27” to be a “safe” choice—
which, empirically, it is not.

6 Conclusion

In a certain type of games, this paper identi�es a new type of players in the pop-
ulation that cannot be neglected, neither in terms of its prevalence nor in terms
of its e�ect on the aggregate choice pa�ern—and, as a consequence, also on other
players’ empirical best-response in the game. I call the type of players ‘centered-
belief players’ because they have a roughly-symmetric belief that peaks in the

17�e treatment was preceded by a plain-vanilla public-good experiment, and only one of the
two parts was randomly selected for payment.
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centre of the option set. I call them ‘heuristic’ because their choices cannot be
explained by either best- nor quantal-responding to their beliefs, in particular in
the 11–20 game (which sets them apart from, e.g., level-k or noisy-introspection
types). Giving a ‘centered belief’ is not ‘weird’: it simply is a speci�c form of a
central-tendency bias.18 ‘Centered beliefs’ may come from a pre-conception that
‘most variables lead to a Gauss curve’ (think of age, IQ scores, . . . ), which would
likely be triggered only if the underlying variable has a natural ordering.

�e ‘heuristic centered-belief players’ strongly a�ect the aggregate data pat-
tern in the discoordination games and, therefore, also the expected payo�s from
each action in the game. �e ‘heuristic’ players’ response to their belief may
be driven by a reasoning of ‘playing it safe’ which, however, leads to making
an empirically dominated choice. Seeing the ‘heuristic centered-belief type’ in
two rather di�erent games suggests that it is a general phenomenon to some de-
gree. Seeing the predictive power of players’ ‘centered beliefs’ for their actions
in another game shows that a certain fraction of the population uses ‘heuristic
centered-belief play’ as a general strategy within a certain type of games.

�e �ndings are important because they a) help to understand the behaviour
of a non-negligible share of the population, b) because we need to take the player
type into account when making predictions for new se�ings, and c) because the
�ndings show that we cannot look only at aggregate data when searching for the
best model of behaviour. �ey show even that we cannot look only at individual
choices: Arad and Rubinstein (2012) claim that the 11–20 game transparently and
unambiguously identi�es participants’ levels of reasoning because “[i]t is hard
to think of plausible alternative decision rules for this game. (…) �e only other
conceivable rules of behavior we could think of are randomly choosing a strat-
egy or arbitrarily guessing the other player’s strategy and best-responding to it.”
As I show in this paper, ‘heuristic centered-belief players’ neither choose their
strategy “randomly” (at least not in the usual sense) nor do they best-respond
to arbitrary guesses, and yet, they do follow an alternative decision rule. What
alternative decision rule they follow, and exactly which features of a situation
trigger ‘heuristic centered-belief play’ is an important topic of further research.
As an immediate next step, the �ndings of Crose�o et al. (2020) suggest that �rst-
price auctions might be another se�ing where ‘heuristic centered-belief players’
could play a role.

18‘Centered beliefs’ are a speci�c form of central-tendency bias because they require a some-
what symmetric belief in addition to the increased subjective-probability on central options; note
that in the cluster analysis on beliefs in Section 5.3, there is an additional belief cluster that also
peaks in the centre, but that is highly asymmetric.
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Appendix

Robustness of the cluster analysis

Number of Clusters 1 2 3 4 5 6 7 8 9 10

Identi�ed ‘centered-belief types’ (in %) 100 34 26 47 40 31 22 22 24 24

Table A.6: Proportion of participants classi�ed as having ‘centered beliefs’ using
cluster analyses for di�erent numbers of clusters (using standard k-means clus-
tering as inplemented in the kmeans function in R).
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Berger, U., De Silva, H., and Fellner-Röhling, G. (2016). Cognitive hierarchies in
the minimizer game. Journal of Economic Behavior & Organization, 130:337–
348.

Bock, O., Baetge, I., and Nicklisch, A. (2014). hroot: Hamburg registration and
organization online tool. European Economic Review, 71:117–120.

Bordalo, P., Gennaioli, N., and Shleifer, A. (2012). Salience theory of choice under
risk. �e �arterly Journal of Economics, 127(3):1243–1285.

Burchardi, K. B. and Penczynski, S. P. (2014). Out of your mind: Estimating
individual reasoning in one shot games. Games and Economic Behavior, 84:39–
57.

24



Camerer, C. F., Ho, T.-H., and Chong, J.-K. (2004). A cognitive hierarchy model
of games. �arterly Journal of Economics, 119(3):861–898.

Chmura, T., Goerg, S. J., and Selten, R. (2014). Generalized impulse balance: An
experimental test for a class of 3 × 3 games. Review of Behavioral Economics,
1:27–53.

Cooper, D. J., Fatás, E., Morales, A. J., and Qi, S. (2018). Consistent depth of
reasoning in level-k models. Working paper.

Crawford, V. P., Costa-Gomes, M. A., and Iriberri, N. (2013). Structural models of
nonequilibrium strategic thinking: �eory, evidence, and applications. Journal
of Economic Literature, 51(1):5–62.
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