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Abstract

stratEst is a software package for the estimation of finite mixture models of discrete
choice strategies in the statistical computing environment R. Discrete choice strategies
can be customized by the user to fit the environment in which choices are made. The
parameters of the strategy estimation model describe the behavior of each strategy and
how frequent each strategy is in the population. The estimation function of the package
uses the expectation maximization algorithm and the Newton-Raphson method to find
the maximum likelihood estimates of the model parameters. The estimation function
can also be used to fit a strategy estimation model with individual level covariates to
explain the selection of strategies by individuals. The package contains functions for
data processing and simulation, strategy generation, parameter tests, model checking,
and model selection.

Keywords: discrete choice strategies, finite mixture model, R.

1. Introduction

stratEst is a software package for strategy estimation in the statistical computing environment
R (R Development Core Team, 2020). The goal of strategy estimation is to explain discrete
choices of a sample of individuals by a finite mixture model of individual choice strategies.
Each choice strategy is a complete action plan for all situations that might arise in the choice
environment. The parameters of the strategy estimation model describe the behavior of each
strategy in the choice environment and how frequent each strategy is in the population.

As a motivating example, consider the following game. Two players play two periods of rock-
paper-scissors. In each period of the game, the players simultaneously choose one of three
possible actions: rock, paper or scissors. This choice environment creates several situations
where a player has to choose between the three alternatives. One situation is the first period
of the game where a player has no experience of play. The situation in period two is different.
For example, the player might have lost the first period by choosing 'rock’. Or the player might
have won the first period by choosing 'paper’. In total, the game can produce 1 4+ 3 x 3 = 10
situations where a player must choose between the three alternatives.

The statement I play rock in the first period’ describes a choice in this environment. The
statement I always play rock’ describes a strategy for the environment because it defines a
choice for every possible situation. The statement 'I randomly choose an action in the first
period and subsequently repeat my choice’ also describes a strategy for the environment.
Each strategy generates a characteristic pattern of choices across the different situations
of the choice environment. Comparing the observed choices to the choices predicted by a
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strategy yields the likelihood that the observed choices were generated by the strategy. This
information can be used to (1) refine the behavior of the strategy in order to fit the data
better, and (2) estimate the share of individuals in the population which uses the strategy.

Finite mixture models of decision strategies have a long tradition in experimental economics
(Stahl and Wilson 1994, 1995). In a seminal contribution, Dal Bé and Fréchette (2011)
estimate the maximum likelihood frequencies of a set of candidate strategies to explain par-
ticipants’ choices in a repeated prisoner’s dilemma experiment. The study of Dal B6 and
Fréchette (2011) established strategy estimation as the standard method to analyze choices in
the repeated prisoner’s dilemma (e.g. Aoyagi, Bhaskar, and Frechette 2019; Arechar, Dreber,
Fudenberg, and Rand 2017; Camera, Casari, and Bigoni 2012; Embrey, Frechette, and Yuksel
2017; Fudenberg, Rand, and Dreber 2012; Frechette and Yuksel 2017). Embrey, Frechette,
and Stacchetti (2013) use strategy estimation to explain choices in a repeated partnership
game with more than two choice alternatives. Breitmoser (2015) extends the strategy esti-
mation model of Dal Bé and Fréchette (2011) by adding model parameters for the choice
probabilities of the strategies. Dvorak and Fehrler (2018) extend the model further by adding
individual level covariates to explain the selection of strategies by individuals.

The stratEst package provides a general framework for strategy estimation in R. In principle,
the package can be used to fit strategy estimation models to any data set with discrete
choices. The package overcomes two practical problems of strategy estimation. The first
problem is the substantial programming effort needed to perform strategy estimation from
scratch. To obtain the maximum likelihood estimates of the model parameters, it is necessary
to write code which calculates the likelihood that a given sequence of choices is generated by
a certain strategy. If the strategies of the model differ, this requires to write specific code for
each strategy. This is a tedious task, especially for complex strategies. The second practical
problem of strategy estimation is the difficulty to use existing strategy estimation code for
data from other choice environments. The close correspondence between the strategies and
the choice environment usually requires to adapt a substantial proportion of the existing code.

The stratEst package makes it possible to create, store and adjust choice strategies in a simple
format. The strategy generation function of the package represents strategies as deterministic
finite state automata. Each automaton has a finite number of internal states. Each state is
characterized by a different set of choice probabilities for the choice alternatives. The current
state of an automaton changes according to a deterministic rule after receiving some input
from the environment. In the automaton representation of a strategy, the probability of
each choice alternative depends on the current state of the automaton and not on the choice
situation. If the number of choice situations is large, this creates a concise representation of
the behavior of the strategy. At the same time, the automaton can mimic complex behavioral
patterns by reacting to the input from the environment.

The simplicity of the automaton representation facilitates the programming of strategies
considerably. It also makes it easy to adapt existing strategies to other choice environments.
Despite the simplicity, even complex strategies can be represented as a deterministic finite
state automata. To give an example, consider the strategy known as ’grim trigger’ in the
literature on the repeated prisoner’s dilemma. The strategy suggests cooperation as long as
the other player has always cooperated in the past. If the game is repeated for many periods,
using the ’grim trigger’ strategy requires to correctly remember and adequately react to a long
history of past events. Despite the complexity of this task, the strategy can be represented
as automaton with only two states. The first state is the start state which prescribes to
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cooperate. The second state prescribes not to cooperate. It is entered as soon as the partner
does not cooperate and never left again.

The estimation function of the package obtains the maximum likelihood parameters of the
strategy estimation model based on the expectation maximization algorithm (Dempster,
Laird, and Rubin 1977) and the Newton-Raphson method. In principle, this can also be
achieved with R packages for cluster and latent class analysis like Flexmix (Leisch 2004),
poLCA (Linzer and Lewis 2011), and randomLCA (Beath 2011). A potential drawback of
using these packages for strategy estimation is that the model can only contain strategies
that are structurally similar to each other. This restriction excludes the possibility to create
a reasonable set of candidate strategies for most choice environments. The stratEst package
overcomes this limitation. The package can be used to fit mixtures of strategies which differ
substantially from each other. An important limitation is that it must be possible to rep-
resent the strategies of the model as deterministic finite state automata which react to the
same inputs from the environment. The package facilitates strategy estimation considerably
by providing functions which specifically support strategy programming, data processing and
simulation, model selection and checking, and parameter testing.

The package is available from the Comprehensive R Archive Network at http://CRAN.R-
project.org/package=stratEst. To speed up the estimation procedure, the package integrates
C++ and R with the help of the R packages Repp (Eddelbuettel and Frangois 2011) and
the open source linear algebra library for the C++ language RppArmadillo (Sanderson and
Curtin 2016). Package development is supported by the packages devtools (Wickham, Hester,
and Chang 2020b), testthat (Wickham 2011), roxygen2 (Wickham, Danenberg, Csardi, and
Eugster 2020a), and Sweave (Leisch 2002).

The article is organized as follows. Section 2 formally introduces strategy estimation. Section
3 provides several examples which illustrate the most important functions of the package.
Section 4 concludes. Section 5 contains the documentation of the most important functions.

2. Strategy estimation

Strategy estimation is a form of finite mixture modeling (McLachlan and Peel 2005), and sim-
ilar to cluster analysis (Kaufman and Rousseeuw 1990), and latent class analysis (Lazarsfeld
1950). All methods essentially assign observed entities to unobservable classes. In strat-
egy estimation, the entities are sequences of discrete choices, observed in a specific choice
environment, and the unobservable classes are choice strategies.

2.1. Terminology and model definition

Suppose N individuals repeatedly choose between R choice alternatives. Each choice occurs
in a certain choice situation j € J. Fach situation is characterized by a unique history of
observable events. The strategy estimation model assumes that the discrete choices can be
explained by a finite mixture of K choice strategies. Each individual i (i = 1,..., N) uses
one of the K strategies. Each strategy k (kK = 1,..., K) assigns a strategy specific state
sk (sg = 1,...,5k) to situation j. The subscript k of the index s, which indicates that
the strategies can have different numbers of states is ignored for better readability. State s
determines the probability ms,. that strategy k chooses alternative r in situation j.

Let yisr denote the number of times individual ¢ chooses alternative r in all situations for
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which the state of strategy k is s. The total number of choices observed in these situations
is nis = Zf”:l y,iST. The central modeling assumption of the strategy estimation model is
conditional independence (Bandeen-Roche, Miglioretti, Zeger, and Rathouz 1997). Condi-
tional independence implies that the ”23 choices of individual 7 are independent conditional
on the strategy the individual uses. If individual ¢ uses strategy k, the probability to observe
the choice vector YkiS = (y,isl, e ,y,is ) follows n}%s independent draws from a multinomial
distribution defined by the vector of probabilities 75 = (7gs1, -+, Trsr) With mrs. € [0, 1]
and Zﬁ:l Tksr = 1.

The basic strategy estimation model

Let pp denote the share of individuals in the population which follow strategy k£ defined by
the collection of R x S; multinomial choice probabilities mjg.-. The estimation function of the
package returns the estimates pj, 7, that maximize the log likelihood:

N K S. R .
InL = Zln Dk H H(ﬂ'km«)ykﬂ ) (1)
1

i=1 k= s=1r=1

The parameter constraints are py € [0, 1], Zszl pp =1, T € [0,1] and S°F | 7y = 1. The
log likelihood defined in Equation (1) neglects the multinomial coefficients of the likelihood
which are constant factors and do not affect the location of the optima.

The strategy estimation model defined by Equation 1 can also contain strategies with pure
responses. The response of strategy k in state s is pure, if one alternative is predicted with
certainty. In this case, the choice probabilities of strategy k in state s are the result of pure
choice probabilities &g € {0,1} confounded by trembling hand errors (Selten 1975). Let
ks € [0, 1] denote the tremble probability of strategy k in state s. The choice probabilities
of strategy k in state s are:

Tksr = gksr(l - ’Vks) + (1 - gksr)R’yisl . (2)

Equation 2 implies that the tremble uniformly implements one of the choices not predicted by
the strategy. The tremble rules out that a single choice which is not predicted by the strategy
results in a likelihood of zero that the individual uses the strategy. If the model contains
strategies with pure responses, the estimation function of the package additionally returns
the parameter estimates £, and 7}, that maximize the log likelihood defined in Equation 1.

The model with covariates

The strategy estimation model with covariates has two parts: a measurement part and a
structural part. The measurement part contains the choice parameters of the strategies and
is the same as in the model without covariates. The structural part of the model explains
the prior probability p;; that individual 7 uses strategy k as a function of individual level
covariates. The structural part of the model with covariates is the same as in latent class
regression (Dayton and Macready 1988; Bandeen-Roche et al. 1997).

The structural part uses the first strategy as the benchmark. The log odds of using strategy
k compared to the first strategy are modeled by the multinomial logit link function (Agresti
2003). Let x; denote a row vector that contains the covariates of individual 4, then:

In(pir/pi1) = xifr ¥ k
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where p;i is the prior probability that individual ¢ uses strategy k& and (i is a column vector
of C coefficients. The K equations above yield:

e%iBr

Dir = 2521 o%iBr

The estimation function of the package maximizes the log likelihood:

N K St R ;
L =310 (32 g T T ®)
k=1

=1 s=1r=1

The parameters of the model defined in Equation 3 are the parameters of the basic strategy
estimation model, except for the strategy shares pi. The strategy shares are replaced by the
vectors [ which contain the coefficients of the covariates.

The measurement part of the model with covariates assumes local conditional indepen-
dence. The structural part of the model with covariates assumes non-differential measurement
(Bandeen-Roche et al. 1997). Non-differential measurement suggests that the choices of all
individuals that use the same strategy are not associated with the covariates of these individ-
uals.

When fitting a model with covariates, the parameters in the structural part and the mea-
surement part are estimated simultaneously. This presents an advantage over a two-step
estimation. In the two-step estimation, the strategy estimation model is estimated without
covariates first and individuals are assigned to strategies on the basis of the posterior proba-
bility to use each strategy. In the second step, the classification of individuals is used as the
dependent variable in a multinomial model with the individual level covariates as indepen-
dent variables. It can be shown that the two-step approach suffers from downward biased
regression coefficients for the effects of covariates if the classification of individuals is noisy
(Bolck, Croon, and Hagenaars 2004).

2.2. Parameter estimation

The estimation function of the package is stratEst.model(). The function obtains the
maximum likelihood estimates of the model parameters. The model are the strategy shares,
the (pure) choice probabilities, the tremble probabilities, and, if the model has covariates, the
coefficients of the covariates. The estimated model parameters are returned by the estimation
function as objects shares.par, probs.par, trembles.par, and coefficients.par.

The estimation function uses the expectation maximization algorithm (EM, Dempster et al.
1977) and the Newton-Raphson method to obtain the maximum likelihood estimates of the
model parameters. The expectation maximization algorithm exploits the fact that the maxi-
mum likelihood estimates of the strategy parameters could be inferred if the assignments of
individuals to strategies were known.

The optimization procedure randomly initializes parameters subject to the parameter con-
straints. After initialization the EM algorithm iterates between two steps until convergence.
In the expectation step of each iteration, the posterior probability that individual ¢ uses strat-
egy k is updated based on the current values of the model parameters. For the model without
covariates, the posterior probability that individual ¢ uses strategy k is a function of the prior
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probability pi and the likelihood of the choices given the strategy parameters mgg,.
S i
9'k o Dk Hsil Hﬁ:l (Wksr)yks’“
K2 - S 7
ZkKZI pk Hsil Hﬁzl (ﬂ-kST‘)yksr

For the model with covariates the prior probability is replaced by the probability p;; which
is a function of the covariates.

(4)

In the maximization step of each iteration, the model parameters are updated to the values
that maximize (1) or (3) conditional on the calculated posterior probability assignments of
individuals to strategies.

After all model parameters have been updated, the log likelihood of the updated model is
determined based on (1) or (3) and compared to the log likelihood calculated in the previous
iteration. The algorithm continues with the next iteration as long as the increase in the log
likelihood exceeds a certain threshold.

To avoid that local optima are returned by the estimation function, the optimization procedure
performs a series of short ’inner’ runs of the EM algorithm from different starting points. The
best solution obtained in the inner runs is used as the starting point of an ’outer’ run of EM.
The estimation function of the package returns the best solution obtained in the outer runs.
Biernacki, Celeux, and Govaert (2003) show that this method can be used to efficiently locate
the maximum likelihood parameters of mixture models. In the maximization step of each
iteration, the model parameters are updated according to the following rules.

Strategy shares

In the model without covariates, the population shares p; are updated to the expected values
of the posterior probability assignments of individuals to strategies. The optimization of
strategy shares px, with respect to a sum-to-one constraint is performed based on the Lagrange
multiplier function

K
A(pg, ) =InL + A (Zpk — 1) .
k=1

Setting the partial derivatives OA/dpy and OA/OA to zero and solving for py and A yields the
conditions
N g K
pp=-> ~ and > pp=1

i=1 k=1
which together yield A = —N. Substitution into the first condition yields

N
next __ Zi:l sz

If user defined values are supplied for some strategy shares the remaining strategy shares are
scaled by one minus the sum of these values to fulfill the sum-to-one constraint.
Choice probabilities

The choice probabilities m;s are updated based on K weighted data sets. To obtain the
weighted data for strategy k, the choices of individual ¢ are considered proportional to the
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posterior probability 6;;. that individual ¢ uses strategy k. Using Lagrange multipliers, the
updated choice probabilities 7wy, follow from

Oiry,;
T grnext = ]\;7]{:87‘7‘ (6)
o1 2i=1 Ok
The pure choice probabilities &g, are updated by a transformation of the updated choice
probabilities 7y, according to

T ksr
ksr

(7)

next {1 if mpert > et g/ oLy

0 otherwise.

Equation 7 assigns density of one to the maximum of the updated vector m2¢**. This assures

that the corresponding tremble parameters s remain as small as possible. If there is more
than one parameter with the maximum probability, the first parameter is set to one and the
others to zero.

Tremble probabilities

The updated tremble probabilities follow from the substitution of (2) into (6). For the update
of the tremble all updated pure choice probabilities affected by the tremble are taken into
account.
O S oy — ) (it
Test = N : R (8)
=1 Oik - Ry,

=1

Regression coefficients

The regression coefficients of the model with covariates are updated based on a Newton-
Raphson step (Bandeen-Roche et al. 1997). The updated column vector of coefficients S is

Bnext — /3 o Hﬁ_lvﬁ (9)
where V3 is the score of the coefficient vector with elements
omL Y
=) @ig(0ir — pir) (10)
85(]]@ ; [ AN} 7

in columns and Hp is the Hessian of (3) for the coefficients with elements

L P Ouis — 0) — pue — i) 1)
— Tordi (0 — 04 — s —
aﬁblaﬁck paet ibLic\Yil\Olk ik Pit( 01k Pik
where I,k € {1,--- K} and b,c € {1,---,C} and &, = 1 if [ = k and &), = 0 otherwise.
In order to calculate p;, for individual 4, the row vector x; which contains the covariates of

individual ¢ cannot contain missing values.

Firth (1993) proposes to use the penalized log likelihood function InLP = InL + 1log(|Hp|) to
account for the fact that the maximum likelihood estimates of the coefficients are biased in
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finite samples. In some instances the maximum likelihood coefficients for the sample can be
infinite.

The Firth correction produces reasonable estimates and standard errors in such situations
by penalizing the likelihood function with the Jeffreys’ invariant prior. Using the penalized
likelihood LP = L|H, 5|% effectively shrinks coefficients towards zero which guarantees that
maximum likelihood estimates do exist.

Taking the derivative of the penalized log likelihood with respect to the coefficients yields the
penalized score vector Vgah. Bull, Mak, and Greenwood (2002) show that the small sample
bias can effectively be reduced by using the penalized score Vgah to update the coefficients
of the multinomial logistic regression model. The penalized score vector of the regression
coefficients in the model with covariates is:

omrr X 1 OH
P _ _ 0 — S (HIY 5) 12

vﬂah 85&]1 ; (xl(l( ih plh)) + 2 T < ﬁ 66ah ( )
where h € {1,--- K} and a € {1,--- ,C} and tr(-) is the trace of the matrix. The derivative
of the element in row [ with covariate b and column k& with covariate ¢ of the hessian matrix
Hpg with respect to gy, is:

OHy
B > iawivwic(0i (e — Oik) (Sin — Oin) — 0ubik (S, — Oin) +
a i=1

Pit(dix — pir) (Ot — Pin) — PuPik (Okn — Pin))
where h,l,k € {1,--- K} and a,b,c € {1,--- ,C} and 64 = 1 if a = b and 0 otherwise.

2.3. Standard errors

The estimation function returns the standard errors of the model parameters as the objects
shares.se, probs.se, trembles.se, and coefficients.se. The standard errors of the
model parameters are estimated based on the empirical observed information matrix (Meilij-
son 1989)(see Linzer and Lewis 2011, for an earlier application of the method). The empirical
observed information matrix is

N
LY, W) = s(Y;, )s" (Y, ), (13)
i=1
where s(Y;, \i/) is the score contribution of individual ¢ with respect to parameter vector W,
evaluated at the maximum likelihood estimate W. The reported standard errors are the square

roots of the main diagonal of the inverse of I.(Y, ¥).

To calculate the standard error of the parameter 7, with Z§:1 n» = 1, the score func-
tion s(Y;, 1) transformed into log ratios u, = In(n,/n1) and the variance-covariance matrix
VAR(7) is calculated based on (13). The variance-covariance matrix VAR(u) of the parame-
ters is approximated using the delta method

VAR(f (1)) = f/ () Ie(Y, ) ()7, (14)

where f'(p) is the Jacobian of the function f(u,) = 7, = e/ S | 1, which converts the
values back to the original units.
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The following score contributions are used to calculate the empirical observed information
matrix defined in (13).

Strategy shares

The shares are transformed into log ratios as p; = In(py/p1) and the score contribution
O0InL /0pj of individual ¢ is

(Y5, pr) = Oik — pr- (15)
Let f(pl) = pr = €Pr/ S5, el denote the inverse of the transformation, then the Jacobian
1'(p*) has elements

of (py)
opyf

(16)

{—pkpl i1
pe(l—p) ifl=k

and the variance-covariance matrix of the shares is estimated by (14) using the inverse of (13)
based on the score contributions of the shares defined in (15).

Choice probabilities

If 7s are mixed parameters standard errors are calculated based on the transformation
s = IN(Tksr/Trs1) and the score contribution dlnL /073, of individual ¢ is

S(Yi7 FZST‘) = O (ylicsr - n;‘csﬂ-ksr) : (17)

Let g(n},) = Tper = €"rr/ SR ¥ denote the inverse of the transformation, then the
Jacobian ¢'(7*) has elements

dg(mr.) —TherTitq ifk=land s=tand r #q
% = Tisr(1 —mq) ifk=1land s=tand r=gq (18)
tq 0 otherwise

and the variance-covariance matrix of the choice probabilities is estimated by (14) using the
inverse of (13) based on the score contributions defined in (17).

Tremble probabilities

For strategies with pure responses, the score contribution dlnL /97 of individual i is

R _
S(}/i”YZs) = sz Z M (1&9871 - fksr) (19)

r—1 Tksr R-1

the reported estimates of the variance-covariance of the tremble probabilities is the inverse of
(13) using the score contributions outlined in (19).
Regression coefficients

The reported estimates of the variance-covariance is the inverse of (13) using the score of the
regression coefficients outlined in (10) or (12) if the Firth penalty is used.
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Bootstrapped standard errors

Standard errors of the model parameters can also be obtained by a parametric bootstrap
(Efron and Tibshirani 1993). In each bootstrap sample m (m = 1,..., M), parameter esti-
mates are obtained based on the observations of N individuals sampled with replacement.
Estimates for the choice probabilities 7y and ~ys for strategy k are obtained by fixing the
parameters of all other strategies of the model at the original maximum likelihood estimates.
This maintains the original structure of the estimated model across the M bootstrap samples.

For the model with covariates, the Firth penalty is used to obtain the estimates of the re-
gression coefficients for each sample. The reason is that it is likely that some bootstrap
samples suffer from quasi complete separation. In a sample with quasi complete separation,
the maximum likelihood estimates of the regression coefficients do not exist, and the returned
estimates can be infinite. The infinite values bias the estimated standard errors of the re-
gression coefficients. The penalized estimation prevents that infinite parameter values are
obtained in samples with quasi complete separation.

2.4. Model fit

The model checking function of the package is stratEst.check(). The function returns the
log likelihood of the model, the number of free model parameters, and the values of three
information criteria. The function can also be used to assess the global and local model fit
based on the Pearson x? goodness of fit statistic.

Information criteria

Three different penalized-likelihood criteria can be used to assess the global model fit. The
criteria are the Akaike Information Criterion (AIC, Akaike 1973), the Bayesian Information
Criterion (BIC, Schwarz 1978), and the Integrated Classification Likelihood (ICL, Biernacki,
Celeux, and Govaert 2000). The formulas for the three model selection criteria are:

AIC = —2InL + 2df

BIC = —2InL + log(Nops)df

N K
ICL =BIC+2) > flog(bir)

i=1k=1
In all three formulas, df represents the number of free parameters of the model. The number
of free parameters is returned by the estimation function as the object free.par. The three
information criteria differ in the size of the penalty for model complexity. AIC penalizes
the log likelihood with two times the number estimated parameters. BIC penalizes the log
likelihood with the number of estimated parameters times the natural logarithm of the number
of observations (num.obs). ICL uses the BIC penalty plus an extra penalty term for the
entropy of the posterior probability assignments of individuals to strategies.

x? test of global fit

The Pearson x? goodness of fit test can be used to assess the global model fit of the strategy
estimation model (see van Kollenburg, Mulder, and Vermunt 2015, for an application to latent
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class models). The Pearson x? goodness of fit test statistic is:
K St R ( 2
Oksr — €ksr)
X2 _ Z Z Z %’ (2())
k=1s=1r=1 ksr

where opg, = Zf\il Qiky,i o and epe, = Z?Ll pkwksrn}; . represent the observed and the expected
number of choices of alternative r by strategy k in state s. As the assignments of individuals to
strategies are unknown, the statistic is calculated using the posterior probability assignment
0;1 of individual ¢ to strategy k.

The distribution of the test statistic is estimated by a parametric bootstrap (Efron and Tib-
shirani 1993). The bootstrap procedure simulates M samples of data for the fitted model. In
each sample, individuals are randomly assigned to the strategies with probabilities equal to
the estimated shares. Choices are simulated conditional on the input observed by each indi-
vidual and the fitted choice parameters of the strategy the individual uses. The distribution
of the test statistic is approximated by calculating the statistic defined in (20) in each of the
M samples.

x? test of local fit

The local fit of each strategy is assessed by assigning individuals to strategies based on the
maximum values of the posterior probability assignments (Bandeen-Roche et al. 1997). Let
N, denote the set of all individuals with a posterior probability maximum for strategy k. The
Pearson x? statistic for strategy k is:

S R(o — ehor)?
X%:ZZZM (21)

iENg s=1r=1 Eksr

with opg = y,isr and epg = Wksrn};s as the observed and the expected number of choices of
alternative r by strategy k in state s.

The distributions of the K local fit statistics are estimated by a parametric bootstrap. The
bootstrap simulates M samples of data for the fitted model. The distribution of the test
statistic is approximated by calculating the statistic defined in (20) in each of the M samples.

2.5. Model selection

The number of free model parameters equals (K —1)+(R—1)-3K | S, for the model without
covariates and C(K — 1) + (R — 1) - .5 | S for the model with covariates. The number of
free model parameters changes if the models contains strategies with pure responses. Four
different methods can be used to reduce the number of free model parameters.

Parameter fixation

The first method is to fix model parameters at user defined values. The fixation of model
parameters can often be justified on the basis of theory. Parameters of all classes of model
parameters can be fixed. It is possible to fix the strategy shares, the (pure) choice probabilities,
the tremble probabilities, and the coefficients of a model.

It is generally also possible to fix only a subset of parameters of the same class (e.g. two out
of four strategy shares). The coefficients of the model with covariates mark an exception.

11
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For this parameter class, either all or no parameter can be fixed. Fixed parameters are not
estimated and reduce the number of free model parameters accordingly.

The fixation of parameters which are subject to a sum-to-one constraint affects all other
parameters affected by the constraint. If parameters are fixed at a certain value, the remaining
parameters are updated and subsequently scaled by the one minus the sum of fixed parameters.

Parameter restrictions

The argument r.probs of the estimation function stratEst.model() can be used to re-
strict the number of estimated choice probabilities w. Four options can be used which are
"strategies", "states", "global", and "no". The default is "no" which implements no
restriction.

The option "strategies" estimates one parameter vector 7y = (71, ..., Txr) for each of the
K strategies. The vector 7 determines the probability of choices in all states s € {1,..., St}
of strategy k. The option "states" estimates one parameter vector w5 = (7s1,...,7sgr) for
each state s € {1,...,max(Sk)}. The vector w5 determines the probability of choices in state
s for all strategies. The option "global" estimates a single parameter vector 7 = (m1,...,7R)
that determines the probability of choices in all states of each strategy.

For strategies with pure choice probabilities, the argument r.trembles can be used in a sim-
ilar fashion. The four options of for the argument r.trembles are "strategies", "states",
"global", and "no". The default is "global" which estimates one tremble probability which
applies across all states of all strategies.

The option "strategies" estimates one tremble probability 4 per strategy. The tremble
probability «y determines the probability of a tremble in all states s € {1,..., Sk} of strat-
egy k. The option "states" estimates one tremble probability vs per state. The tremble
probability s determines the probability of a tremble in state s for all strategies. The op-
tion "global" estimates a single tremble probability v that determines the probability of a
tremble in all states of each strategy. The option "no" estimates a tremble probability s
for each state of each strategy. The tremble probability v;s determines the probability of a
tremble in state s of strategy k.

If restrictions to the strategy parameters apply, the maximization step in the parameter
estimation needs to be adapted accordingly. Let Zp; denote the set of all states s of strategy
k where the corresponding strategy parameters are restricted to have the same underlying
parameter vector (;, with ¢ (t =1,...,T) being the index of the restrictions. The individual
score contributions to (; take all parameters affected by restriction ¢ into account, i.e.

next __ Al gikyliesr
=22 (22)

N i
1 b1 562y, 2aim1 2ase Zy, Dik M

if (; is a vector of choice probabilities. The tremble probabilities (; are updated according to

.o )
Ca K 0T — k&) (e
next _ =
W=D 2 '

N O R 1] (23)
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The scores of the parameters change accordingly. The score contribution of individual ¢ is the
sum over all states s € Zi; in which parameters are affected by restriction ¢. The contribution
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of individual 7 to the score JlnL/07;}, of the restricted choice probability 7. is

(Y3, 7Ttr Z Oik Z (yisr - nésﬂkST) : (24)

SEZLt
and the Jacobian ¢'(7*) has elements
dg(nt) —Tr Tug ift=wandr#gq
gﬂ:r ={m(l—myy) ift=wandr=gq (25)
b 0 otherwise.

The contribution of individual i to the score dlnL/dv; of the restricted tremble probability
~¢ of individual 7 is

W) =3 eng:;f (e - i (26)

k=1s€Zy

Parameter selection

The number of choice parameters m and v can be selected with the argument select of the
estimation function stratEst.model(). The options "probs" and "trembles" select the
number of choice parameters m, and = respectively. The selection is performed based on one
of the three information criteria. The argument which identifies the information criterion is
crit. Options are "aic", "bic" or "icl".

The arguments r.probs and r.trembles control which combinations of parameter vectors
can be reduced to a single parameter vector. The option "strategies" defines that the
parameter vectors within each strategy are selected. The option "states" defines that the
parameter vectors within each state across strategies are selected. The option "global"
defines that all parameter vectors are selected.

The selection procedure starts by estimating the unrestricted model. For every feasible pair-
wise combination of parameters vectors of the same parameter class, a model is estimated
where the two parameter vectors are reduced to a single parameter vector. The lowest value of
the information criterion of these models is compared to the value of the information criterion
of the unrestricted model. If the model with the reduced number of parameters has a better
fit according to the information criterion, it is the new best model. The procedure continues
as long as the fusion of any feasible combination of two parameters vectors improves the fit
of the model.

Strategy selection

The number of strategies K is selected with the option select = "strategies". The selec-
tion is performed based on one of the three information criteria. The argument that identifies
the information criterion is crit. Options are "aic", "bic" or "icl".

The selection procedure starts by estimating the complete model with K strategies. Next, the
K nested models with K — 1 strategies are estimated. The K nested models are obtained by
excluding one strategy from the set of candidate strategies. The best value of the information

13
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criterion of the K nested models is compared to the value of the complete model with K
strategies. If the value of the nested model is lower, the nested model is the new best model,
and new number of strategies is K — 1. The selection procedure is repeated as long as the
exclusion of one strategy improves the value of the information criterion.

3. Using stratEst

The following examples illustrate the most important functions of the stratEst package.
The functions are stratEst.strategy() for strategy generation, stratEst.data() and
stratEst.simulate () for data processing and simulation, stratEst.model () for model esti-
mation, stratEst.check() for model checking, and stratEst.test () for parameter testing.

3.1. Rock-paper-scissors: An introductory example

This example illustrates the core features of the package on the basis of the game rock-paper-
scissors. In each period of this game, two players simultaneously choose one of three possible
actions: rock, paper or scissors. The winner of the period is determined by the following rule:
rock crushes scissors, scissors cut paper, and paper covers rock. If both players choose the
same action, this results in a tie.

This example shows how to fit different strategy estimation models to the data of a rock-paper-
scissors experiment conducted by Wang, Xu, and Zhou (2014). The data frame WXZ2014
contains the data of the experiment. In the experiment, 72 university students play 300
periods of rock-paper-scissors in groups of six. In each period, each student is randomly
matched with another student from the same group. 35.7 percent of all choices in the data
are rock (r), 32.2 percent are paper (p), and 32.1 percent are scissors (s). The distribution of
choices is fairly in line with the Nash equilibrium of rock-paper-scissors. The Nash equilibrium
suggest that every player uses the same strategy. This strategy plays each of the three actions
with probability one-third.

Models with mized strategies

The function stratEst.strategy() is the strategy generation function of the package. The
strategy function returns a data frame object of class stratEst.strategy. The data frame
object represents a strategy as deterministic finite state automaton. Each row of the data
frame is one state of the automaton. Each state assigns a probability to each of the three
choice alternatives: rock (r), paper (p), and scissors (s).

The following code creates a mixed strategy for the rock-paper-scissors game. The mixed
strategy plays each of the three alternatives r, p, and s with some unknown probability.

R> library(stratEst)

R> rps = C(”I'", "pll’ ”S”)

R> mixed = stratEst.strategy(choices = rps)
R> print(mixed)

prob.r prob.p prob.s
1 NA NA NA
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The argument choices defines the names of the choice alternatives. Printing the object mixed
to the console, shows that the strategy mixed is represented as an automaton with one state.
The probabilities of the three choices r, p, and s in this state are NA. If a model with the
strategy mixed is fitted, the choice probabilities are parameters of the model. Whenever a
model parameter is NA, this indicates to the estimation function that the parameter should
be estimated from the data.

The estimation function stratEst() can be used to fit a model with the strategy mixed to
the rock-paper-scissors data.

R> model.one.mixed <- stratEst.model(data = WXZ2014,
+ strategies = list("mixed" = mixed))

The estimation function stratEst () checks the supplied arguments, estimates the model and
returns a list object of class stratEst.model. The elements of this list can be accessed with
the syntax model$object where object can be replaced by any object name in names (model).
The generic function summary() can be used to print a summary of the estimated model to
the console.

R> summary (model.one.mixed)

model.one.mixed

number of individuals: 72
number of observations: 21600
log likelihood: -23704.04
free model parameters: 2
convergence: yes

shares

prob.r prob.p prob.s
mixed 0.36 0.32 0.32

Since the model has only one strategy, the estimated share of this strategy is one. The
maximum likelihood estimates of the choice probabilities of the mixed strategy reflect the
overall distribution of choices in the data.

The following command fits a mixture model of two mixed strategies.

R> set.seed(0)

R> model.two.mixed <- stratEst.model(data = WXZ2014,

+ strategies = list("mixed.1" = mixed,
+ "mixed.2" = mixed))
R> print(model.two.mixed$shares)

15
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mixed.1 mixed.?2
share 0.06944161 0.9305584

R> print(model.two.mixed$strategies)

$mixed.1
prob.r prob.p prob.s
1 0.2720114 0.2026563 0.5253324

$mixed.2
prob.r prob.p prob.s
1 0.3628844 0.3311944 0.3059211

The strategy shares can be interpreted as the share of individuals in the population that
follows each strategy. According to the fitted model parameters, 93 percent of the individuals
in the population follows the strategy mixed.2. The choice probabilities of the strategy
mixed.2 are similar to the overall distribution of choices. The remaining 7 percent of the
population follows the strategy mixed.1. This strategy tends to play scissors and avoids to

play paper.

Mixture of two different strategies

The following command creates the Nash equilibrium strategy of rock-paper-scissors.
R> nash = stratEst.strategy(choices = rps, prob.choices = c(1/3, 1/3, 1/3))

The argument prob.choice of the strategy generation function defines the choice probabilities
of the strategy nash. Therefore, the values supplied to the argument prob.choice must sum
to one. If the choice probabilities of a strategy are defined, the probabilities are known
parameters and do not need to be estimated from the data. If printed out in the console, the
strategy nash looks like this:

R> print(nash)

prob.r prob.p prob.s
1 0.333 0.333 0.333

The following command fits a mixture of the strategies mixed and nash to the rock-paper-
scissors data.

R> model.mixed.nash <- stratEst.model(data = WXZ2014,

+ strategies = list("mixed" = mixed,
+ "nash" = nash))
R> print(model.mixed.nash$shares)

mixed nash
share 0.05555565 0.9444444
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R> print(model.mixed.nash$strategies$mixed)

prob.r prob.p prob.s
1 0.3058335 0.1583334 0.535833

The returned strategy shares indicate that 94 percent of the population follow the Nash
strategy. A minority of 6 percent follows the mixed strategy which tends to play scissors and
avoids to play paper.

Complex strategies

The strategies nash and mixed are simple strategies in the sense that the choice probabilities
of these strategies do not change across different situation of the choice environment. Both
strategies can be represented as a deterministic finite state automaton with one state. The
objects mixed and nash generated by the function stratEst.strategy () have one row which
contains the choice probabilities of this state.

More complex strategies can be represented as automata with several states. Each state is
represented by one row with a different set of choice probabilities. Transitions between the
states are triggered by some input. The input indicates a certain condition of the choice
environment or a certain history of past events.

The strategy imitate is an example of a more complex strategy. The strategy randomly
makes a choice in the first period of the game and subsequently imitates the choice of the
previous period. The following code generates the strategy imitate:

R> last.choice = c(NA, rps)

R> imitate = stratEst.strategy(choices = rps, inputs = last.choice,

+ num.states = 4,

+ prob.choices = ¢(1/3, 1/3, 1/3, 1, 0, O,
+ 0, 1, 0, 0, 0, 1),

+ tr.inputs = rep(c(2, 3, 4), 4))

The argument inputs of the strategy generation function defines a set of inputs for the
strategy. The object supplied to the argument inputs is a character vector with one element
for each possible choice in the previous period. The value NA indicates that the input can
be missing. This is the case in the first period when no information about the previous
period exists. The argument num. states defines the number of states of the automaton. The
argument tr.inputs defines the deterministic state transitions for all possible inputs and all
states. The result is a strategy with four states. Each state is represented by one row of the
object imitate.

R> print(imitate)

prob.r prob.p prob.s tremble tr(r) tr(p) tr(s)

1 0.333 0.333 0.333 NA 2 3 4
2 1.000 0.000 0.000 NA 2 3 4
3 0.000 1.000 0.000 NA 2 3 4
4 0.000 0.000 1.000 NA 2 3 4
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The object imitate has a column named tr(x) for each possible input x. An exception is
the element NA that indicates the missing input in the first period. The values supplied to
the argument tr.inputs appear in row wise order.

The strategy imitate also contains a column with the name tremble. The values in this
column indicate the probability to choose one of the choices not prescribed by the strategy in
the current state. A tremble probability is necessary if choice probabilities of zero and one.
The purpose of the tremble probability is to avoid that a single deviation from the choice
pattern of the strategy results in a likelihood of zero that the individual uses the strategy.
The tremble probability can be specified with the argument trembles. If the argument is
missing, the probability of a tremble is NA. This signals to the estimation function that the
tremble probabilities need to be estimated from the data.

The strategy imitate transitions from one state to the other by the following deterministic
rule. In the first period, the strategy observes the input NA since there is no information on
the previous choice available. By convention, whenever the input is NA, the strategy moves to
its start state. The start state of the strategy is the state represented by the first row. The
strategy makes a choice according to the choice probabilities in the first row.

In period two, the strategy observes the input (either r, p or s) and moves to the next state
defined by the value of tr(input) in the current state. The values supplied to tr.inputs
create the desired behavior of the strategy imitate. The strategy randomly makes a choice
in the first period, and subsequently plays rock after rock, paper after paper, and scissors
after scissors.

In order to fit the strategy imitate to the rock-paper-scissors data, the data must contain a
variable with the input. The function stratEst.data() can be used to generate a data frame
with this variable.

R> data.WXZ2014 <- stratEst.data(data = WXZ2014, choice = "choice",

+ input = c("choice"), input.lag = 1,
+ id = "id”, game = ugameu’
+ period = "period")

The first argument of the function expects a data.frame object with variables in columns.
The argument choice defines the variable in the data which contains the discrete choices.
The argument input allows selecting one or more variable names which serve as input for the
strategies in the estimation. If more than one variable is selected, the function concatenates
the values of these variables to a unique factor level. The input of for the strategy imitate
only needs one variable. This variable is the variable choice which contains the choices of the
participant. As the input should reflect the value of this variable in the previous period, the
argument input.lag is set to one. The arguments id, game, and period uniquely identify
the participant, and the period within the game.

The function stratEst.data() returns a data frame object of class stratEst.data. The
command print(data.WXZ2014) prints the object.

The following command estimates a mixture model with the strategies nash and imitate.

R> model.nash.imitate <- stratEst.model(data = data.WXZ2014,
+ strategies = list("nash" = nash,
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+ "imitate" = imitate))
R> print(model.nash.imitate$shares)

nash imitate
share 0.5843183 0.4156817

R> print(model.nash.imitate$strategies)

$nash
prob.r prob.p prob.s tr(p) tr(r) tr(s) tremble

1 0.3333333 0.3333333 0.3333333 1 1 1 NA
$imitate

prob.r prob.p prob.s tremble tr(r) tr(p) tr(s)
1 0.333 0.333 0.333 NA 2 3 4
2 1.000 0.000 0.000 0.391 2 3 4
3 0.000 1.000 0.000 0.391 2 3 4
4 0.000 0.000 1.000 0.391 2 3 4

The estimated shares suggest that each strategy is used by approximately half of the partici-
pants in the experiment. The fitted tremble parameter of the strategy imitate indicates that
a different choice than the one predicted by the strategy is chosen in 39 percent of all obser-
vations. In these observations, the participants randomly pick one of the choice alternatives
not predicted by the strategy.

Model fit

The function stratEst.check() can be used to check the global and local fit of a model.
The following code summarizes the log likelihood, the number of free model parameters, and
the values of three information criteria of the models estimated so far.

R> models <- list(model.one.mixed, model.two.mixed, model.mixed.nash,

+ model.nash.imitate)

R> model.fit <- do.call(rbind, unlist(lapply(models, stratEst.check),
+ recursive = F))

R> rownames (model.fit) <- c("model.one.mixed", "model.two.mixed",

+ "model.mixed.nash", "model.nash.imitate")

R> print(model.fit)

loglike free.par aic bic icl
model.one.mixed -23704.04 2 47412.09 47416.64 47416.64
model.two.mixed -23574.93 5 47159.86 47171.24 47171.25
model .mixed.nash  -23613.30 3 47232.60 47239.43 47239.43
model .nash.imitate -22358.43 2 44720.87 44725.42 44728.34

The best global fit is obtained by the mixture of nash and imitate. The log likelihood of this
model is larger than the log likelihood of the other models. The mixture model of nash and
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imitate also yields the best (smallest) values of the three information criteria: the Akaike
information criterion (aic), the Bayesian information criterion (bic), and Integrated classi-
fication likelihood (icl). The information criteria take the number of free model parameters
into account for the evaluation of the global model fit.

Model selection

The argument select of the estimation function can be used for model selection. To give
an example, the option select = "strategies" selects the best of all models which can be
constructed by combination of six rock-paper-scissors strategies. The list strategies.RPS
contains the six rock-paper-scissors strategies. The strategies are the strategies mixed, nash,
imitate, rock, paper, and scissors. The strategies rock, paper, and scissors always
make the same choice if no tremble occurs. The argument crit of the estimation function
defines the information criterion used for the selection. The model selection procedure starts
by estimating the model that contains all six strategies and subsequently drops strategies as
long as this improves the value of the information criterion.

R> selected.model <- stratEst.model (data = data.WXZ2014,

+ strategies = strategies.RPS,

+ select = "strategies", crit = "aic")
R> print(selected.model$shares)

rock nash mixed imitate
share 0.02785163 0.4069174 0.1628454 0.4023855

The best model identified by the selection procedure contains the four strategies rock, nash,
mixed, and imitate. A closer look at the strategies rock and imitate reveals that these two
strategies have the same tremble probability. The reason is that, by default, the estimation
function estimates one tremble parameter for all strategies and all states.

To argument r.trembles of the estimation function can be used to relax this restriction. The
option "strategies" will estimate one tremble parameter per strategy. The option "state"
one tremble parameter for each state. The option "no" estimates tremble parameter for each
state of each strategy. Similarly, the argument r.probs defines restrictions for the choice
probabilities.

R> selected.strategies <- strategies.RPS[c("rock","nash","mixed","imitate")]
R> unrestricted.model <- stratEst.model(data = data.WXZ2014,

+ strategies = selected.strategies,

+ r.trembles = "no")

The unrestricted model contains four tremble parameters. One for the strategy rock, and
three for the strategy imitate.
Testing model parameters

The general syntax to access the estimated parameters x of a model is model$x.par. The es-
timation function returns several other objects for the estimated parameters x. These include
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the standard errors (se), the covariance matrix (covar), and the score vector of the parame-
ters (score). The returned objects can be accessed with the general syntax model$x.object.

The function stratEst.test() of the package retrieves the parameter estimates and the
standard errors of a fitted model and performs a t test. The degrees of freedom used by the
test are the number of individuals minus the number of free model parameters. The degrees
of freedom are returned by the estimation function as the object res.degrees.

To give an example, the estimates and standard errors of the choice probabilities of the
model with one mixed strategy are returned as the object model.one.mixed$probs.par and
the object model.one.mixed$probs.se. The function stratEst.test () can be used to show
that the estimated choice probabilities differ from the choice probabilities of the Nash strategy.

R> test <- stratEst.test(model = model.one.mixed, par = "probs", values = 1/3)
R> print(test)

estimate diff std.error t.value df p.value
probs.par.1  0.3223 -0.0111 0.0014 -8.0838 70 0
probs.par.2 0.3566 0.0232 0.0013 17.6404 70 0
probs.par.3  0.3212 -0.0122 0.0012 -10.3417 70 0

The argument par of the function stratEst.test () defines the class of model parameters for
which tests are performed. The argument values defines the values the parameter estimates
are compared to.

The function returns a data frame with one row for each tested model parameter. The first
column contains the parameter estimates. The second column the differences to the values
the parameters are compared to. Columns three to five contain the standard errors of the
parameters, the t values and the degrees of freedom of the tests. Columns six contains the p
values of the tests which indicate that the choice probabilities differ from one third. It should
be noted that the three tests are not independent as the three tested parameters are subject
to the same sum-to-one constraint.

Individual-level covariates

The basic strategy estimation model can be augmented by individual level covariates which
explain the selection of strategies by individuals. The following commands generate two
covariates for the rock-paper-scissors data. The first covariate is an intercept which is one
for every individual. The second covariate is a normally distributed random number with a
mean of zero and a standard deviation of one. Since the two covariates vary on the level of
the individual, observation with the same id need to have the same covariate values.

R> set.seed(0)

R> data.covariates <- data.WXZ2014

R> data.covariates$intercept = rep(1, nrow(WXZ2014))
R> id.random <- rnorm(length(unique (WXZ2014$id)))
R> data.covariates$random = id.random[WXZ2014$id]

The following command fits a mixture of the strategies nash and imitate with the covariates
intercept and random to the rock-paper-scissors data.
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R> model.covariates <- stratEst.model(data = data.covariates,

+ strategies = list("nash" = nash,
+ "imitate" = imitate),
+ covariates = c("intercept", "random"))

R> print(model.covariates$coefficients)

nash imitate
intercept 0 -0.3534746
random 0 -0.2631341

In a model with covariates, the first strategy in the list of strategies is used as the reference
strategy. The coefficients of the reference strategy are always zero. The estimated coefficient
of the intercept for the strategy imitate is estimated from the data. It is the logarithm of
the ratio of the estimated prior probability to use the strategy imitate and the estimated
prior probability to use the strategy nash, if all other covariates are zero.

The coefficient of the intercept can be used to calculate the estimated prior probability to use
the strategy imitate for an individual with a random covariate of zero. The estimated prior
probability to use the strategy imitate for this individual is exp(—0.35)/(1 + exp(—0.35)) =
0.41. Since zero is the expected value of the distribution of the random covariate, this corre-
sponds to the estimated share of the strategy imitate.

The coefficient of the covariate random can be used to calculate the prior probability for differ-
ent values of the random covariate. The negative coefficient means that the prior probability
to use the strategy imitate decreases for larger values of the variable random. For instance,
the prior probability to use the strategy imitate for an individual with a random covariate
of one is exp(—0.35 — 0.25) /(1 + exp(—0.35 — 0.25)) = 0.35.

3.2. Simulated data

The simulation function of the package is stratEst.simulate (). The function can be used to
generate data on the basis of a fully specified model. A fully specified model can be obtained
by fitting a model to data or by defining each parameter of the model by hand. This example
illustrates how the simulation function can be used to validate the parameter estimates and
standard errors returned by the estimation function. Consider a model with two strategies
for the choices ’left’ and ’right’:

R> set.seed(1)

R> 1r <- c("left","right")

R> mixed <- stratEst.strategy(choices = 1lr, inputs = lr, num.states = 1)
R> pure <- stratEst.strategy(choices = 1r, inputs = lr,

+ prob.choices = c(1, 0, 0, 1),
+ tr.inputs = c(1, 2, 1, 2))
R> strategies <- list("mixed" = mixed, "pure" = pure)

Strategy mixed plays ’left’ with a mixed probability 7 drawn from U(0,1). Strategy pure
plays ’left’ if the input is ’left’, and ’right’ if the input is 'right’ with tremble probability ~
drawn from U(0,0.25).
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R> pi <- runif(1)
R> gamma <- runif(1)/4

The strategy shares depend on the coefficient 8 drawn from N(0,1). The value of § defines
the share of the mixed strategy p.

R> beta <- rnorm(1)
R> p <- 1/sum(1 + exp(beta))

The following commands insert the parameters m and  into the strategies mixed and pure
and create a list of the two strategies.

R> p <- 1/sum(1 + exp(beta))

R> sim.shares <- c(p, 1-p)

R> mixed$prob.left <- pi

R> mixed$prob.right <- 1 - pi

R> pure$tremble <- gamma

R> sim.strategies <- list("mixed" = mixed, "pure" = pure)

Now, the model is fully specified and can be used to simulate a data set.

R> sim.data <- stratEst.simulate(strategies = sim.strategies,
+ shares = sim.shares, num.ids = 100,
+ num.games = 10, num.periods = rep(5, 10))

The simulation function creates a stratEst.data object which contains the observations of
100 individuals. Each individual is assigned to one of the strategies with probabilities defined
by the object sim.shares. Each individual plays ten games with five periods. In each
period, the individual observes an input randomly drawn from the set of inputs. The input
triggers a state transition of the strategy used by the individual. After the state transition,
the individual chooses an alternative with probabilities defined by the current state of the
strategy.

The following commands estimate two models. One model without covariates, and one model
with an intercept as covariate.

R> model <- stratEst.model(data = sim.data, strategies = strategies)

R> sim.data$intercept <- rep(1l, nrow(sim.data))

R> model.lcr <- stratEst.model(data = sim.data, strategies = strategies,
+ covariates = "intercept")

The estimated model parameters differ from the true parameters due to sampling error. The
function stratEst.test() can be used to test if the estimated parameters differ from the
true parameters.

R> pars <- c(p, 1-p, pi, 1-pi, gamma)
R> test.pars <- stratEst.test(model, values = pars)
R> print(test.pars)
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estimate diff std.error t.value df p.value
shares.par.1 0.4300 -0.0242 0.0495 -0.4892 97 0.6258
shares.par.2 0.5700 0.0242 0.0495 0.4892 97 0.6258
probs.par.1 0.2716 0.0061 0.0094 0.6535 97 0.5150
probs.par.2 0.7284 -0.0061 0.0094 -0.6535 97 0.5150

trembles.par.1  0.0923 -0.0008 0.0057 -0.1327 97 0.8947

The p values of the tests indicate that the tests of the strategy shares and the choice proba-
bilities are not independent. The reason is of course that these parameters are subject to a
sum-to-one constraint.

The simulation function generates a variable strategy that contains the result of the prob-
abilistic assignment of individuals to strategies. This variable can be used to calculate the
maximum likelihood parameters of the sample.

R> strategy <- sim.data$strategy
R> choice <- sim.data$choice
R> input <- sim.data$input

R> p.ml <- mean(strategy == "mixed")
R> pi.ml <- mean(choicel[strategy == "mixed"] == "left")
R> gamma.ml <- mean( choicel[strategy == "pure"] != input[strategy == "pure"])

R> print(round(c(p.ml, 1 - p.ml, pi.ml, 1 - pi.ml, gamma.ml), 4))
[1] 0.4300 0.5700 0.2716 0.7284 0.0923

Comparing the parameter estimates summarized in the output of the function strategy.test ()
to these values shows that the estimation function returned the maximum likelihood param-
eters of the sample.

Table 1 summarizes the estimation results for 10.000 simulated samples of data. The first
three rows of Table 1 depict the results for the parameters of the model without the intercept.
The last three rows depict the results for the parameters of the model with the intercept. The
columns show the means of the estimated parameters, the difference and absolute difference
of the estimated parameters and the maximum likelihood parameters of the sample, and the
rejection probability of a t test for the model parameters with an « level of 5 percent.

The first column shows that the means of the estimated parameters are close to the means of
the distributions these parameters are sampled from. Columns two and three show that the
algorithm usually converges to the maximum likelihood estimates of the sample. Columns
four and five show that the rejection rate of t tests of the model parameters is close to the 5
percent « level, for both analytic and bootstrapped standard errors.

3.3. Replication of Dal Bo and Frechette, 2011

This example replicates the strategy estimation results of the seminal strategy estimation
by Dal Bé and Fréchette (2011). The study investigates the evolution of cooperation in
the indefinitely repeated prisoner’s dilemma across six experimental treatments. The six
treatments differ in the stage game parameters and the continuation probability d of the
repeated game.
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P(> |¢|) < 0.05
0 O, Oy — Oum, |0, — 9m| analytic bootstrap
model without covariates
P 0.4966 6e-05 0.0012 0.0537 0.0551
T 0.5002 2e-06 0.0002 0.0439 0.0558
vy 0.1265 -3e-05 0.0004 0.0497 0.0613
model with covariates
I5) -0.0012 -4e-02 1.6639 0.0442 0.0468
T 0.5002 2e-06 0.0002 0.0439 0.0553
o 0.1265 -3e-05 0.0004 0.0497 0.0612

Table 1: Estimates and rejection probability for simulated data. Average estimates and
rejection probability across 10.000 Monte Carlo samples of simulated data. Each sample
contains the choices of 100 individuals in 10 games with 5 periods. 6,, is the maximum
likelihood estimate of the parameter in sample m. ém is the parameter estimate returned
by the estimation function for sample m. Bootstrapped standard errors are based on 100
samples.

The stage game parameters are depicted in Figure 1. The parameter R is either 32, 40 or 48.
For each value of R, two treatments exist with d of 1/2 or 3/4. This results in a 2 x 3 between
subject design with six treatments overall. Dal B6 and Fréchette (2011) fit the same strategy

C D

C| R,R | 12,50

D | 50,12 | 25,25

Figure 1: Stage game of Dal B6 and Fréchette (2011). The two choices of the stage game are
cooperation (C) and defection (D). R varies between experimental treatments and can take
the values 32, 40 or 48.

estimation model with six strategies to the data of each treatment. The strategies of this
model are: Always Defect (ALLD), Always Cooperate (ALLC), Tit-For-Tat (TFT), Grim-
Trigger (GRIM), Win-Stay-Lose-Shift (WSLS), and a trigger strategy with two periods of
punishment (T2). The list strategies.DF2011 contains the six strategies. All six strategies
in this list have the same structure. For example, the Tit-For-Tat strategy looks like this:

R> print(strategies.DF2011$TFT)

prob.d prob.c tremble tr(cc) tr(cd) tr(dc) tr(dd)
1 0 1 NA 1 2 1 2
2 1 0 NA 1 2 1 2

The strategy TFT chooses between the alternatives defect (d) and cooperate (c). State tran-
sitions are triggered by four different inputs. The four inputs reflect all possible combinations
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of actions in the last period. The first letter represents the own action in the previous period
and the second letter the action of the other player in the previous period.

The data frame DF2011 contains the experimental data collected by Dal B6 and Fréchette
(2011). The following code creates a stratEst.data frame which fits the structure of the
strategies in the list strategies.DF2011:

R> data.DF2011 <- stratEst.data(data = DF2011, choice = '"choice",

+ input = c("choice","other.choice"),
+ input.lag = 1)
The options input = c("choice", "other.choice") and input.lag = 1 create the input

variable by concatenating the own and the other player’s choice of the previous period.

The command replicates the results of the strategy estimation by Dal B6 and Fréchette (2011):

R> model.DF2011 <- stratEst.model(data = data.DF2011,

+ strategies = strategies.DF2011,
+ sample.id = "treatment" )
The option sample.id = "treatment" is used to estimate a model with one vector of shares

and one tremble parameter for each level of the factor treatment in the data. The estimated
shares are the strategy shares reported in Table 7 on page 424 of Dal B6 and Fréchette (2011).

R> print(round(do.call(rbind, model.DF2011$shares), 2))

ALLD ALLC GRIM TFT WSLS T2

treatment.D5R32 0.92 0.00 0.00 0.08 0.00 0.00
treatment.D5R40 0.78 0.08 0.04 0.10 0.00 0.00
treatment.D5R48 0.53 0.07 0.00 0.38 0.02 0.00
treatment.D75R32 0.65 0.00 0.00 0.35 0.00 0.00
treatment.D75R40 0.11 0.30 0.27 0.33 0.00 0.00
treatment.D75R48 0.00 0.08 0.12 0.56 0.00 0.24

3.4. Replication of Fudenberg, Rand and Dreber, 2012

This example replicates the strategy estimation results of Fudenberg et al. (2012). The
authors conduct a prisoner’s dilemma experiment in which intended choices are implemented
with noise. The stage game payoffs are such that cooperation means paying a cost ¢ to give
a benefit b to the other player. The authors run four between subjects treatments. The cost
c is fixed at 2 points experimental currency in every treatment. The benefit to cost ratio b/c
varies across treatments and takes the values 1.5, 2, 2.5, and 4.

Due to the noisy implementation of choices, Fudenberg et al. (2012) add several lenient
and forgiving strategies to the set of strategies used by Dal B6 and Fréchette (2011). The
augmented set of strategies is available as the list strategies.FRD2012. The strategies have
the same structure as in the previous example. The choices of the strategies are d (defect),
and ¢ (cooperate). The four inputs reflect the four different combinations of the own choice,
and the choice of the other player in the previous period.
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The data frame FRD2012 contains the data of the experiment. The variable choice contains
the choices of the participants. The variables last.choice and last.other indicate own
choice and the choice of the other player in the previous period. These two variables are
supplied to the argument input of the data generation function:

R> data.FRD2012 <- stratEst.data(data = FRD2012, choice = '"choice",
+ input = c("last.choice", "last.other"))

The following code reproduces the strategy shares reported by Fudenberg et al. (2012) in
Table 3 on page 733 of the paper.

R> model.FRD2012 <- stratEst.model(data = data.FRD2012,

+ strategies = strategies.FRD2012,
+ sample.id = "bc")

R> print(round(do.call(rbind, model.FRD2012$shares), 2))

ALLC TFT TF2T TF3T T2FT T2F2T GRIM GRIM2 GRIM3 ALLD DTFT
bc.1.5 0.00 0.19 0.05 0.01 0.06 0.00 0.14 0.06 0.06 0.29 0.14
bc.2 0.03 0.06 0.00 0.03 0.07 0.11 0.07 0.18 0.28 0.17 0.00
bc.2.5 0.00 0.09 0.17 0.05 0.02 0.11 0.11 0.02 0.24 0.14 0.05
bc.4 0.07 0.09 0.18 0.13 0.05 0.09 0.06 0.07 0.10 0.14 0.03

For the treatment with b/c = 4, the estimation function of the package finds a better solution
with a larger log likelihood than the solution reported by Fudenberg et al. (2012).

3.5. Replication of Dvorak, Fischbacher and Schmelz, 2020

This example replicates the strategy estimation results of Dvorak, Fischbacher, and Schmelz
(2020). The authors study conformity and anticonformity in a binary choice experiment.
Participants are matched in groups of three and compete for a monetary reward with the
other two group members. One individual of each group is informed about the choices of
two other group members before making the own choice. The experimental design makes it
possible to predict the preferred alternative of the individual in this choice.

Dvorak et al. (2020) find that two-thirds of the participants use a conformist strategy. The
conformist strategy generally follows the own preference if the choices of the other group
members are in line with the own preference. It frequently deviates from the own preference
if the choices of the other group members are not in line with the own preference.

The remaining one-third of the participants follows an anticonformist strategy. The anticon-
formist strategy generally follows the own preference if the choices of the other group members
are not in line with the own preference. It frequently deviates from the own preference if the
choices of the other group members are in line with the own preference.

The fitted choice probabilities of the two strategies are:

R> print(strategies.DFS2020)

$anticonformist
prob.follow prob.deviate tr(not in line) tr(in line)
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1 0.823 0.177 1 2
2 0.404 0.596 1 2
$conformist

prob.follow prob.deviate tr(not in line) tr(in line)
1 0.425 0.575 1 2
2 0.860 0.140 1 2

The data DFS2020 contains the experimental data of Dvorak et al. (2020). The variable
"choice" of this data set is a factor with two levels. The two levels indicate if the choice
of the participant follows the own preference (follow) or deviates from the own preference
(deviate). The variable "others.choices" of this data set is also a factor with two levels.
The levels indicate if the choices of the other two group members are in line with the preference
of the participant (in line) or not in line with the preference of the participant (not in
line).

The data also contains two variables which are used by Dvorak et al. (2020) as individual level
covariates for the selection of strategies. The first variable is an intercept, which is one for
every observation. The second variable is the score of the participant in a post-experimental
conformity questionnaire (Mehrabian and Stefl 1995). The mean conformity score of the
participants is -0.078 with a standard deviation of 1.02.

The following command creates a stratEst.data object with the variable others.choices
as input:

R> data.DFS2020 <- stratEst.data(data = DFS2020,
+ input = "others.choices")

The following command fits a strategy estimation model with the covariates intercept and
conformity.score to the data:

R> model.DFS2020 <- stratEst.model(data = data.DFS2020 ,

+ strategies = strategies.DFS2020,
+ covariates = c("intercept",
+ "conformity.score"))

The estimated coeflicients are:
R> print(model.DFS2020$coefficients)

anticonformist conformist
intercept 0 0.8273618
conformity.score 0 0.8697285

The first strategy is the reference category of the structural model. The coefficients for the
reference category are always zero. The second column contains the estimated coefficients for
the conformist strategy. The coefficient of the intercept indicates that the conformist strategy
is used more frequently. The estimated coefficient of the intercept can be used to calculate the
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estimated prior probability to use the conformist strategy for a participant with a conformity
score of zero. The prior probability that a participant with a conformity score of zero uses
the conformist strategy is exp(0.83)/(1 + exp(0.83)) = 0.69.

The coefficient of the score reveals that the prior probability to use the conformist strategy
increases with the score of the participant in the conformity questionnaire. To give an exam-
ple, a participant who scores one standard deviation higher than average in the conformity
questionnaire has a prior probability of exp(0.83 + 0.87)/(1 + exp(0.83 + 0.87)) = 0.85 to use
the conformist strategy. The estimated prior probabilities are a function of the conformity
score of each participant. The prior probabilities are returned by the estimation function as
the object model.DFS2020$prior.assignment.

The function stratEst.test() can be used to show that the estimated coefficients signifi-
cantly differ from zero.

R> test.coefficients <- stratEst.test(model.DFS2020, par = "coefficients")
R> print(test.coefficients)

estimate  diff std.error t.value df p.value
coefficients.par.1  0.8274 0.8274 0.3065 2.6997 103 0.0081
coefficients.par.2  0.8697 0.8697 0.3184 2.7319 103 0.0074

The function stratEst.check() can be used to assess the global and local model fit based
on the Pearson x? test statistic.

R> check.DFS2020 <- stratEst.check(model.DFS2020, chi.tests = TRUE,
+ bs.samples = 100)
R> print(check.DFS2020$chi.global)

chi™2 min mean max p.value
model .DFS2020 0.08554165 0.07108578 2.623929 8.065177 0.99

R> print(check.DFS2020$chi.local)

chi®2 min mean max p.value
anticonformist 52.29308 17.60894 47.81437 79.03572 0.38
conformist 117.70654 58.92359 109.50872 155.70476 0.31

The distribution of each test statistic is approximated by 100 bootstrap samples. The p
value of the global test indicates the probability of the data, under the assumption that the
estimated model is the true model. The p value of the local tests indicate the probability that
the choices of all participants which are assigned to the same strategy are generated by this
strategy. Both tests support the null hypothesis that the estimated model is the true data
generating model.

4. Conclusion

29
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The R package stratEst provides an easy-to-use framework for fitting finite mixture models of
choice strategies to discrete choice data. The estimation function of the package fits a finite
mixture model of user defined choice strategies and returns various quantities of interest,
like the maximum likelihood estimates and the standard errors of the model parameters. The
estimation function can also be used to fit strategy estimation models with covariates to study
the individual determinants of strategy use. The package provides functions which facilitate
strategy programming, data processing and simulation, model selection and checking, and
parameter testing.

The package is still under development. One restriction that will be relaxed in future versions
of the package is that all strategies of a model need to react to the same input. In many
cases, it is possible to represent all strategies of a model as automata that jointly fulfill this
restriction. However, the automaton representation of some strategies might be unnecessarily
complex in this case, which makes the programming of the strategies more difficult than it
should be.

Another planned extension is the implementation of additional model checks for the strategy
estimation model with covariates. Currently, the checks that can be performed for the model
with covariates focus on the measurement model and test the global model fit and the assump-
tion of conditional independence. In addition to conditional independence, the structural part
of the model with covariates assumes non-differential measurement. Non-differential measure-
ment suggests that the choices of all individuals that use the same strategy are not associated
with the covariates of these individuals. A straightforward test for this assumption would
be to regress the choices of all individuals that use the same strategy on the covariates of
these individuals and check for significant coefficients. The fact that the true assignments of
individuals to strategies are unknown, creates a problem for this test. One solution is to clas-
sify individuals according to the posterior probability assignments of individuals to strategies
returned by the fitted model (Bandeen-Roche et al. 1997).

5. Function documentation

5.1. stratEst.strategy()

The strategy generation function of the package. The syntax of the function call is:

R> stratEst.strategy(choices, inputs = NULL, prob.choices = NULL,

+ tr.inputs = NULL, trembles = NULL, num.states = 1)
Inputs

choices: a character vector. The levels of the factor choice in the data.
inputs: a character vector. The levels of the factor input in the data.
prob.choices: a numeric vector. The choice probabilities of the strategy in row

wise order.
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tr.inputs: a vector of integers. The deterministic state transitions of the
strategy in row wise order.

trembles: a numeric vector. The tremble probabilities of the strategy.
num.states: an integer. The number states of the strategy.
Outputs

A stratEst.strategy object. A data frame with the following variables:

prob.x the probability of choice x.
tremble: the probability to observe a tremble.
tr(x): the deterministic state transitions of the strategy for input x.

5.2. stratEst.data()

The data generation function of the package. The syntax of the function call is:

R> stratEst.data(data, choice = "choice", id = "id", input, input.lag = O,

+ input.sep = "", game = "game", period = "period",

+ add = NULL, drop = NULL)

Input

data: a data.frame in the long format.

choice: a character string. The variable in data which contains the

discrete choices. Default is "choice".

input: a character string. The names of the input generating variables
in data. At least one input generating variable has to be speci-
fied. Default is c("input").

input.lag: a numeric vector. The time lag in periods of the input generating
variables. The vector must have as many elements as variables
specified in the object input. Default is zero.

input.sep: a character string. Separates the input generating variables.
Default is "".
id: a character string. The name of the variable in data that iden-

tifies observations of the same individual. Default is "id".

game: a character string. The name of the variable in data that iden-
tifies observations of the same game. Default is "game".
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period:

add:

drop:

Output
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a character string. The name of the variable in data that iden-
tifies the periods of a game. Default is "period".

a character vector. The names of variables in the global envi-
ronment that should be added to the stratEst.data object.
Default is NULL.

a character vector. The names of variables in data that should
be dropped. Default is NULL.

A stratEst.data object. A data frame in the long format with the following variables:

id:
game:
period:
choice:

input:

the variable that identifies observations of the same individual.
the variable that identifies observations of the same game.

the period of the game.

the discrete choices.

the inputs.

5.3. stratEst.model()

The estimation function of the package. The syntax of the function call is:

R> stratEst.model(data, strategies, shares = NULL, coefficients = NULL,

+ + + + + + + +

Input

data:

strategies:

shares:

covariates = NULL, sample.id = NULL, response = "mixed",
sample.specific = c("shares", "probs", "trembles"),
r.probs = "no", r.trembles = "global", select = NULL,
outer.tol = 1e-10, outer.max = 1000, inner.runs = 10,
inner.tol = l1le-5, inner.max = 10, lcr.runs = 100,
Icr.tol = 1e-10, lcr.max = 1000 , bs.samples = 1000,
quantiles = c(0.025,0.5,0.975), stepsize = 1,

penalty = FALSE, verbose = TRUE)

a stratEst.data object or data.frame.

a list of strategies. Each element if the list must be an object of
class stratEst.strategy.

a numeric vector of strategy shares. The order of the elements
corresponds to the order in strategies. Elements which are
NA are estimated from the data. Use a list of numeric vectors if
data has more than one sample and shares are sample specific.
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coefficients: a matrix of latent class regression coefficients.

covariates: a character vector with the names of the covariates of the latent
class regression model in the data. The covariates cannot have
missing values.

sample.id: a character string indicating the name of the variable which
identifies the samples in data. Individual observations must be
nested in samples.

response: a character string which is either "pure" or "mixed". If "pure"
the estimated choice probabilities are either zero or one. If
"mixed" the estimated choice probabilities are mixed param-
eters. The default is "mixed".

sample.specific: a character vector. Defines the model parameters that are sam-
ple specific. Can contain the character strings "shares" ("probs",
"trembles". If the vector contains "shares" ("probs", "trembles"),
the estimation function estimates a set of shares (choice proba-
bilities, trembles) for each sample in the data.

r.probs: a character string. Options are "no", "strategies", "states"
or "global". Option "no" yields one vector of choice probabil-
ities per strategy and state. Option "strategies" yields one
vector of choice probabilities per strategy. Option "states"
yields one vector of choice probabilities per state. Option "global"
yields a single vector of choice probabilities. Default is "no".

r.trembles: a character string. Options are "no", "strategies", "states"
or "global". Option "no" yields one tremble probability per
strategy and state. Option "strategies" yields one tremble
probability per strategy. Option "states" yields one tremble
probability per state. Option "global" yields a single tremble
probability. Default is "no".

select: a character vector. Indicates the classes of model parameters
that are selected. Can contain the strings "strategies", "probs",
and "trembles". If the vector contains"strategies" ("probs",
"trembles"), the number of strategies (choice probabilities, trem-
bles) is selected based on the selection criterion specified in
"crit". The selection can be restricted with the arguments
r.probs and r.trembles. Default is NULL.

min.strategies: an integer. The minimum number of strategies in case of strat-
egy selection. The strategy selection procedure stops if the min-
imum is reached.

crit: a character string. Defines the information criterion used for
model selection. Options are "bic" (Bayesian information crite-
rion), "aic" (Akaike information criterion) or "ic1" (Integrated
Classification Likelihood). Default is "bic".
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se:

outer.runs:

outer.tol:

outer.max:

inner.runs:

inner.tol:

inner .max:

lcr.runs:

lcr.tol:

lcr.max:

bs.samples:

quantiles:

step.size:
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a string. Defines how standard errors are obtained. Options are
"analytic" or "bootstrap". Default is "analytic".

an integer. The number of outer runs of the solver. Default is
1.

a number close to zero. The tolerance of the stopping condition
of the outer runs. The iterative algorithm stops if the relative
decrease of the log likelihood is smaller than this number. De-
fault is le-10.

an integer. The maximum number of iterations of the outer runs
of the solver. The iterative algorithm stops after "outer.max"
iterations if it does not converge. Default is 1000.

an integer. The number of inner runs of the solver. Default is
10.

a number close to zero. The tolerance of the stopping condition
of the inner runs. The iterative algorithm stops if the relative
decrease of the log likelihood is smaller than this number. De-
fault is le-5.

an integer. The maximum number of iterations of the outer runs
of the solver. The iterative algorithm stops after "inner.max"
iterations if it does not converge. Default is 10.

an integer. The number of latent class regression runs of the
solver. Default is 100.

a number close to zero. The tolerance of the stopping condition
of the latent class regression runs. The iterative algorithm stops
if the relative decrease of the log likelihood is smaller than this
number. Default is 1le-10.

an integer. The maximum number of iterations of the latent
class regression runs of the solver. The iterative algorithm stops
after "lcr.max" iterations if it does not converge. Default is
1000.

an integer. The number of bootstrap samples.

a numeric vector. The quantiles of the sampling distribution of
the estimated parameters. Depending on the option of se, the
quantiles are either estimated based on a t-distribution with
res.degrees of freedom and the analytic standard errors or
based the bootstrap.

a number between zero and one. The step size of the Fisher
scoring step which updates the coefficients. Values smaller than
one slow down the convergence of the algorithm and prevent
overshooting. Default is one.



penalty:

verbose:

Output

An object of class stratEst.

strategies:
shares:

probs:

trembles:

gammas:
coefficients:
shares.par:
probs.par:
trembles.par:
gammas.par:
coefficients.par:
shares.indices:
probs.indices:
trembles.indices:
coefficients.indices:
loglike:

num. ids:

num.obs:

num.par:
free.par:
res.degrees:

aic:
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a logical. If TRUE the Firth penalty is used to estimate the co-
efficients of the latent class regression model. Default is FALSE.

a logical. If TRUE information about the estimation process are
printed to the console. Default is FALSE.

A list with the following elements.

the fitted strategies.

the strategy shares.

the choice probabilities of the strategies.

the tremble probabilities of the strategies.

the gamma parameters of the strategies.

the coefficients of the covariates.

the estimated strategy share parameters.

the estimated choice probability parameters.
the estimated tremble parameters.

the estimated gamma parameters.

the estimated coefficient parameters of the covariates.
the parameter indices of the strategy shares.

the parameter indices of the choice probabilities.
the parameter indices of the tremble probabilities.
the parameter indices of the coefficients.

the log likelihood of the model.

the number of individuals.

the number of observations.

the total number of model parameters.

the number of free model parameters.

the residual degrees of freedom.

the Akaike information criterion.
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bic:

icl:
crit.val:
eval:

tol.val:

convergence:

entropy.model:

entropy.assignments:

chi.global:
chi.local:
state.obs:

post.assignments:

prior.assignments:

shares.se:

probs.se:

trembles.se:

gammas.se:
coefficients.se:
shares.quantiles:
probs.quantiles:

trembles.quantiles:

coefficients.quantiles:

shares.score:

probs.score:
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the Bayesian information criterion.

The integrated classification likelihood.

the value of the selection criterion defined by the argument crit.
the total number of iterations of the solver.

the relative decrease of the log likelihood in the last iteration of
the algorithm.

the maximum of the absolute scores of the estimated model
parameters.

the entropy of the model.

the entropy of the posterior probability assignments of individ-
uals to strategies.

the chi square statistic for global model fit.
the chi square statistics for local model fit.
the weighted observations for each strategy state.

the posterior probability assignments of individuals to strate-
gies.

the prior probability of each individual to use a strategy as pre-
dicted by the individual covariates.

the standard errors of the estimated share parameters.

the standard errors of the estimated choice probability parame-
ters.

the standard errors of the estimated tremble probability param-
eters.

the standard errors of the estimated gamma parameters.
the standard errors of the estimated coefficients.

the quantiles of the estimated population shares.

the quantiles of the estimated choice probabilities.

the quantiles of the estimated trembles.

the quantiles of the estimated coefficients.

the scores of the estimated share parameters.

the score of the estimated choice probabilities.



trembles.score:
coefficients.score:
shares.fisher:

probs.fisher:

trembles.fisher:
coefficients.fisher:

fit.args:
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the score of the estimated tremble probabilities.
the score of the estimated coeflicients.
the Fisher information matrix of the estimated shares.

the Fisher information matrix of the estimated choice probabil-
ities.

the Fisher information matrix of the estimated trembles.
the Fisher information matrix of the estimated coefficients.

the input objects of the function call.

5.4. stratEst.simulate()

The simulation function of the package. The syntax of the function call is:

R> stratEst.simulate( data = NULL, strategies, shares

+
+
+

Input

data:

strategies:

shares:

coefficients:

covariate.mat:

num.ids:

num. games :

NULL,

NULL,

num.ids = 100, num.games = 5, num.periods = NULL,
fixed.assignment = FALSE, input.na = FALSE)

coefficients = NULL, covariates

a stratEst.data object. Alternatively, the arguments num. ids,
num.games, and num.periods can be used if no data is available.

a list of strategies. Each element if the list must be an object of
class stratEst.strategy.

a numeric vector of strategy shares. The order of the elements
corresponds to the order in strategies. NA values are not al-
lowed. Use a list of numeric vectors if data has more than one
sample and shares are sample specific.

a matrix of regression coeflicients. Column names correspond
to the names of the strategies, row names to the names of the
covariates.

a matrix with the covariates in columns. The column names
of the matrix indicate the names of the covariates. The matrix
must have as many rows as there are individuals.

an integer. The number of individuals. Default is 100.

an integer. The number of games. Default is 5.
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num.periods:

fixed.assignment:

input.na:

sample.id:

Output
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a vector of integers with as many elements num.games. The
elements specify the number of periods in each game. Default
(NULL) means 5 periods in each game.

a logical value. If FALSE individuals use potentially different
strategies in each game. If TRUE, individuals use the same strat-
egy in each game. Default is FALSE.

a logical value. If FALSE an input value is randomly selected for
the first period. Default is FALSE.

a character string indicating the name of the variable which
identifies the samples in data. Individual observations must be
nested in samples. Default is NULL.

A stratEst.data object. A data frame in the long format with the following variables:

id:
game:
period:
choice:
input:
sample:

strategy:

5.5. stratEst.test()

the variable that identifies observations of the same individual.
the variable that identifies observations of the same game.

the period of the game.

the discrete choices.

the inputs.

the sample of the individual.

the strategy of the individual.

The test function of the package. The syntax of the function call is:

R> stratEst.test(model, par = c("shares", '"probs", "trembles",

+
+

Input

model:

par:

"coefficients"), values = 0,

alternative = "two.sided", digits = 4)

a fitted model of class stratEst.model.

a character vector. The class of model parameters to be tested.
The default is to test all classes of model parameters.



values:

alternative:

digits:

Output
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a numeric vector. The values the parameter estimates are com-
pared to. Default is zero.

a character string. The alternative hypothesis. Options are
"two.sided", "greater" or "less". Default is "two.sided".

an integer. The number of digits of the result.

A data.frame with one row for each tested parameter and 6 variables:

estimate:

diff:

std.error:
t.value:
res.degrees:

p-value:

5.6. stratEst.check()

the parameter estimate.

the difference between the estimated parameter and the numeric
value (if supplied).

the standard error of the estimated parameter.
the t statistic.
the residual degrees of freedom of the model.

the p value of the t statistic.

The function for model checking of the package. The syntax of the function call is:

R> stratEst.check( model, chi.tests = F, bs.samples = 100, verbose = FALSE )

Input

model:

chi.tests:

bs.samples:

verbose:

Output

a fitted model of class stratEst.model.

a logical. If TRUE chi square tests of global and local model fit
are performed. Default is FALSE.

an integer. The number of parametric bootstrap samples for the
chi square tests. Default is 100.

a logical, if TRUE messages of the checking process are printed
to the console. Default is FALSE.

A list of check results with the following elements:
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fit: a matrix. Contains the log likelihood, the number of free model
parameters, and the value of the three information criteria.

chi.global: a matrix. The results of the chi square test for global model fit.

chi.local: a matrix. The results of the chi square test for local model fit.

Computational details

The results in this paper were obtained using R 4.0.2 with the stratEst 1.0.1 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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