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Abstract:

Simple game structures like discoordination, hide-and-seek, or Colonel-Blotto
games have been used to model a wide range of economically relevant situa-
tions. Yet, Nash-equilibrium and its alternatives notoriously fail to explain ob-
served behaviour in these games when alternatives carry descriptive labels. This
paper shows that throughout the different games, behavioural patterns resemble
‘lucky-number’ patterns: the choice patterns in related lotteries. Starting from
this observation, I adjust standard models to account for the data. The adjusted
models outperform the existing models, but they do not outperform a simple
benchmark model. In the benchmark model, agents pick according to the ‘lucky
numbers’ or, under certain circumstances, choose any of the other options with
equal probabilities. Interestingly, this benchmark model predicts two additional
general regularities that bear out on the existing data and new data from two
additional games: hide-and-seek seekers rely on ‘lucky numbers’ more heavily
than any other player role; and the stronger the ‘lucky-number’ pattern deviates
from a uniform distribution, the more likely it is observed also in the game data.

Keywords: Bounded Rationality, Level-k, Salience, Heuristic, Hide & Seek, Dis-
coordination, Rock-Paper-Scissors, Colonel Blotto, Representativeness.
JEL: C72, C90, D83.

1 Introduction

Alternatives in real-life situations are hardly ever abstract objects. Instead, they
usually have non-neutral labels attached to them, and they often have a spatial

3T am thankful for the encouragement and helpful comments of Colin Camerer, Adrian Chadi,
Vincent Crawford, Sebastian Fehrler, Urs Fischbacher, Susanne Goldliicke, Shaun Hargreaves
Heap, Botond K6szegi, Jorg Oechssler, Stefan Penczynski, Ariel Rubinstein, Abdolkarim Sadrieh,
Dirk Sliwka, Robert Sugden, Chris Starmer, Marie-Claire Villeval, Roberto Weber, and the lively
research group at the Thurgau Institute of Economics (TWI), as well as to the participants of
the World Congress of the Game Theory Society 2016 and the UEA Behavioural Game Theory
Workshop 2016.



ordering. When driving from one city to another, we may choose between “the
long but pretty route” and “the short but boring route” or between the “northern”
and the “southern route”, but we rarely choose between “option i and option j,
where i # j”.

Given the ubiquity of non-payoff-related characteristics like the above in our
every-day life, it is important to understand how such descriptions of the avail-
able options affect behaviour also in strategic contexts. For example, when a
mother and her child lose each other in the middle of a city (an obvious coor-
dination game), “the place where they last talked to each other” may be more
salient than “the next street on the right from wherever you are now”.

The literature has long documented that such non-neutral decision frames
do indeed have a strong influence on behaviour in games.! Some of these games
have been at the heart of game theory for decades, capturing elements of im-
portant situations in every-day life: coordination games like that of the mother
and her child looking for each other, when two firms simultaneously decide on
market entry in two markets (potentially a discoordination game), or in military,
police, and intelligence work (hide-and-seek games), just to name some exam-
ples. In contrast, Schelling’s (1960) account of how an action’s non-payoff-related
characteristics may influence behaviour has re-entered the academic debate only
rather recently.

This paper wants to understand behaviour in the general class of “strategy-
isomorphic games” (Hargreaves Heap et al., 2014) that are not coordination games.
Strategy-isomorphic games are all games in which the strategies are indistin-
guishable once we remove the labels of players’ strategies. Examples include the
discoordination and hide-and-seek games mentioned above. I do not focus on
coordination games in this paper because I am convinced that psychologically,
coordination games induce a completely different reasoning in players’ minds. If
the available options are denoted by “A”, “B”, “A”, and “A”, the question of “what
option can we coordinate on?” will generate a different answer in most people
than the question “where should I be hiding so that the other player doesn’t find
me”?* Running experiments on a number of these games, Rubinstein et al. (1997)
show that participants’ behaviour deviates systematically from the unique Nash-
equilibrium (uniform randomisation).> For example, in a hide-and-seek game

!See, e.g., Rubinstein et al. (1997), for coordination games, discoordination games, and hide-
and-seek games; Scharlemann et al. (2001) for trust games where participants’ interaction part-
ners were “labeled” by photographs; or Mehta et al. (1994) and Bardsley et al. (2010), for coordi-
nation games with options carrying naturally occurring labels (following Schelling, 1960).

T include coordination-game data and the corresponding analysis in Appendix B for refer-
ence. The analysis indeed suggests that reasoning is clearly different in coordination games than
in the games I focus on in the main body of the paper.

3See also Rubinstein and Tversky (1993), Rubinstein (1999), or Penczynski (2016).
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played on (“A”, “B”, “A”, “A”), there is a clear mode on the ‘central A’ that is even
more pronounced for seekers than for hiders. Uniform randomisation is also
the quantal-response equilibrium given that strategies are not distinguishable
by their payoffs. Finally, level-k or cognitive-hierarchy models yield the same
solution if they rely on a uniformly-mixing level-0.*

There is only a single model in the literature that accounts for some of Ru-
binstein et al.’s data. In an important contribution, Crawford and Iriberri (2007)
show that a level-k variant based on salience as level-0 can account for hide-and-
seek data from a number of frames. However, Hargreaves Heap et al. (2014) ar-
gue that, had Crawford and Iriberri (2007) used all available games for the frames
Crawford and Iriberri use (namely, the data also from the coordination and dis-
coordination games), the model’s explanatory power would have been small. In
Wolff (2016), I use the central frame from Crawford and Iriberri (2007)—ABAA—
and elicit salience in nine different ways. The elicited salience patterns all tend to
be similar, but they do not allow to account for the data when used as level-0. In
light of the above, it seems fair to say that we currently lack a model that would
come anywhere close to describing data from a domain that is both at the very
heart of game theory and relevant for every-day economic behaviour.

The first contribution of this paper is to establish that when people play dif-
ferent games on the same frame, the actual game being played has a surprisingly
minor role: behaviour always is well-correlated with people’s ‘lucky numbers’—
the options they would pick in a lottery.> Note that the way I use the term ‘lucky
numbers’ in this paper differs from how it is used in everyday language. I do not
assume that when I ask participants “what is your lucky number in ABAA?” they
would reply by “the central A” Rather, I use the term ‘lucky numbers’ to describe
what options participants choose in a lottery context. Section 4.6 relates these
choices to other concepts like salience, representativeness, and valence.

Starting from the observations above, the paper sets out to understand the
strategic behaviour of participants in a variety of games by enriching two of the
most popular models—Nash equilibrium and level-k—in order to accommodate
the findings. I then compare the models’ ability to fit the data to four benchmarks:
the standard versions of Nash equilibrium and level-k, salience-based level-£,

*The quantal-response equilibrium was suggested by McKelvey and Palfrey (1995) and ap-
plied successfully, e.g., by Capra et al. (1999). Level-k was introduced by Nagel (1995) and Stahl
and Wilson (1994). Building on these, studies like Costa-Gomes et al. (2001) or Crawford (2003)
further developed level-k models, while Camerer et al. (2004) developed the cognitive-hierarchy
model. For an overview, see Crawford et al. (2013).

5An earlier reader of the paper pointed out that this correlation might be due to the fact that
seekers and coordinators have to match their opponents’ action much like lottery players have
to match the randomly selected option. However, this argument does not explain why ‘lucky
numbers’ would also be so well-correlated with the choices of hiders, discoordinators, or players
of the other two games I will be discussing in this paper.



and a simple heuristic. Under the heuristic, agents first consider playing their
‘lucky numbers’. With a certain probability, (1 — p), they simply implement this
choice. However, with the counter-probability, p, they reconsider their choice.
Reconsidering agents only sticks to their choice if it is a best-response to a ‘lucky-
number’-playing opponent. Otherwise, they choose anything else with equal
probabilities.

In principle, the probability with which agents reconsider could be different
between people as well as between games—there could be certain situations in
which people are primed to reconsider and others in which they are not. How-
ever, for the purpose of this paper, I assume the reconsidering probability to be
the same for all players and all games. The implication of this assumption is quite
radical: no matter which strategy-isomorphic game we look at, there are only
two choice patterns that can be consistent with the heuristic. One choice pat-
tern coincides with the ‘lucky-number’ pattern, and the other one with a convex
combination of ‘lucky numbers’ (weighted by (1 — p)) and uniform distribution
amongst the ‘non-lucky numbers’ (weighted by p). Note that this implication
makes it clear that the lexicographic nature of the heuristic is important: if the
heuristic were just a convex combination of two behavioural rules, the prediction
would be a single pattern. In contrast, the heuristic makes a different prediction
for hiders and seekers of a hide-and-seek game (or for seekers and for discoor-
dinators), for example.®

The ‘lucky number’-based variants of level-k and Nash equilibrium generally
outperform the pre-existing standard models. Surprisingly, however, none of the
adapted models consistently outperforms the fourth benchmark, the two-step
heuristic. This holds true even though the enriched models all have a higher
number of free parameters, and although following the heuristic involves hardly
any strategic reasoning: in most of the games in this paper, the ‘best-response
check’ merely makes agents randomise among ‘non-lucky numbers’.

This result means that we cannot anchor simply any behavioural model in
‘Tucky numbers’ and expect a satisfactory explanation for the data: doing so for a
level-k model does not strongly outperform the heuristic on hide-and-seek data

®Note also that the heuristic is not just ‘salience plus randomisation’: while ‘lucky numbers’
are influenced by salience, this is not the only component as my analysis in Section 4.6 shows.
To take a prominent example, in ABAA, the most salient option is clearly the B, while the ‘most
lucky number’ by our measure is ‘the central A’. Finally, note the relationship of the heuristic
with level-k: a non-reconsidering agent will behave like level-0 in a ‘lucky number’-based level-
k model; a reconsidering agent who finds it optimal to stick to her choice essentially moves
to level-1 in the same model; yet, reconsidering agents who do not find it optimal to stick to
their choices do something that is completely outside of that model (their choice is not a best-
response). Thus, for seekers, the heuristic coincides with a specific level-k£ model that is based on
a ‘lucky number’-choosing level-0 and is truncated at level-1, while for hiders or discoordinators,
it only shares the level-0 part.



and performs clearly worse in discoordination games. The reason for why the
heuristic performs so well is that it captures two important aspects of the choice
process. First, people are attracted by ‘lucky numbers’ in all games. This aspect
is present also in the enriched variants of Nash equilibrium and level-. But there
is also the second aspect: people’s strategic reaction to others favouring ‘lucky
numbers’ seems to be weaker and less directed than the ‘best-response’ concept
suggests.

The heuristic implies two further general regularities that bear out surpris-
ingly well on both the existing data and new data from two additional games: (i)
the stronger the ‘lucky-number’ pattern deviates from uniform randomisation,
the more likely we will observe it also in the game data, and (ii) hide-and-seek-
game seekers rely on ‘lucky numbers’ more than any other player role I focus on
in this paper. Both regularities together also imply the seeker-advantage that has
been documented in hide-and-seek games (e.g., Rubinstein et al., 1997; Eliaz and
Rubinstein, 2011). In other words, what was meant to be a simple benchmark
model ends up accounting for a long-standing puzzle from the literature.

The present research contained three steps. The first step was the attempt
to find an explanation for the data by amending two popular models of strategic
behaviour. While fitting the amended models to the data, I noticed that a sim-
plistic benchmark strategy was able to account for the data at least as well as
the amended models. The second step was to derive some general implications
from this benchmark strategy that I could use as testable ex-ante hypotheses for
additional data. To do so, I enlarged the set of games by adding a Colonel-Blotto
game (Borel, 1921) and a new game I call the ‘to-your-right game’. In the ‘to-
your-right game’, a player wins a prize if she chooses the action immediately to
the right of her opponent’s choice (in a circular fashion, so that the left-most
action wins against the right-most action). The game is thus a variant of the
rock-paper-scissors game.”

Up to this point, all games I looked at were four-action games. The Colonel-
Blotto game, instead, is a multi-action game. In the variant I use, players have
to allocate up to 40 troops to four locations (that correspond to the four actions
in the other games); whoever has more troops on a location wins it, and who-
ever wins more locations wins the game (with random tie-breaking). I added
this game as another example for a useful game: inter alia, Blotto games have
been used to model allocations of funds towards different voter groups in elec-
toral campaigns.® Note that I did not add the to-your-right and Blotto games to

"The game is also related to the 11-20 game (Arad and Rubinstein, 2012a), in which a player
earns a bonus if she chooses exactly one unit less than the other player. An important difference
is that prizes differ for different options, so that the game is not a strategy-isomorphic game.

8E.g., Groseclose and Snyder (1996); for an earlier experimental implementation, see, e.g.,
Chowdhury et al. (2013). Arad and Rubinstein (2012b) analyse participants’ strategies in a Blotto



compare the predictive power of the heuristic against some equilibrium (which
would not predict any systematic, and thus, exploitable non-uniformness in the
observed choice pattern). Rather, I added them for a proof of concept (by testing
the derived ex-ante hypotheses), and to suggest how to apply the heuristic to
more general games.

The third step was to look at behaviour at the individual level. To this end,
I went back to the laboratory to run the discoordination, hide-and-seek, and to-
your-right games again using the same participants in all games as well as the
lottery task to elicit the individuals’ ‘lucky numbers’. Does the heuristic success-
fully organise this data, too? The answer depends on the benchmark: behaviour
in all games is still clearly correlated with participants’ betting choice (on av-
erage, between 28.3 and 32.8 percent of choices in a game are identical to the
participant’s choice in the corresponding lottery task). On top, there is a strong
correlation between games of how much a participant relies on ‘lucky numbers’
in the different games.

On the other hand, the frequency of ‘lucky-number’ choices amongst seekers
(32 percent) is far from the heuristic’s predicted 100 percent (which, however,
relies on a deterministic interpretation of ‘lucky numbers’ that may be much
closer to the literal meaning of ‘lucky numbers’ than the concept I use here.
And still, discarding the explanation altogether based on this observation seems
wrong: we would be left without an explanation for the four characteristics of
the data described in this paper (see Section 4.5 for an additional argument). I
am the first to acknowledge that the proposed heuristic may prove not to be
the complete answer yet. What does become clear, however, is that participants
favour ‘lucky numbers’, and that ‘best-responding’ seems to be too demanding as
a concept to describe participants’ strategic reaction to others favouring ‘lucky
numbers’.

2 The data

I use data of several papers on behaviour in games where actions are not dis-
tinguishable by their payoffs. All of the games are two-player games played on
frames that have four locations each. The left-hand column of Table 1 provides
an overview of the frames. I use all frames presented by Rubinstein and Tver-
sky (1993) and Rubinstein et al. (1997), plus two obvious complements, BAAA and
AAAB, as well as the Ace-2-3-Joker frame introduced by O’Neill (1987) and also
referred to in Crawford and Iriberri (2007).

It can be argued that including all of Rubinstein et al.’s frames distorts the
analysis because some of these frames use labels with positive or negative con-

game also with respect to locations (left vs. right, centre vs. borders).



Frame Discoordination Hiders Seekers To-your-right Blotto

G GG RTH RTH RTH new new
(49) (53) (62) (110) (94)
polite-rude-honest- RTH RTH RTH new new
-friendly (49) (53) (62) (110) (94)
G Cob &0 RTH RTH RTH new new
(49) (53) (62) (110) (94)
ABAA RTH+WB+BW  RTH+HW+W RTH+HW+W new new
(442) (339) (281) (110) (94)
PRI DN IS RTH RTH RTH new new
(49) (53) (62) (110) (94)
hate-detest-love-dislike RTH RTH RTH new new
(49) (53) (62) (110) (94)
1-2-3-4 WB+BW RT RT new new
(292) (187) (84) (110) (94)
AABA WB+BW RT RT new new
(292) (189) (85) (110) (94)
Ace-2-3-Joker WB+BW new new
(292) (110) (94)
BAAA WB+BW new new
(292) (110) (94)
AAAB WB+BW new new
(292) (110) (94)

RTH: Rubinstein et al. (1997). RT: Rubinstein and Tversky (1993). HW: Heinrich and Wolff (2012). BW: Bauer and Wolff
(2018). WB: Wolff and Bauer (2018). W: Wolff (2015).

Table 1: Origin of the data I use (numbers of observations in parentheses).

notations. Therefore, choosing the associated actions may increase or decrease
utility on top of the utility associated with the resulting monetary outcome. I
nevertheless include all of Rubinstein et al.’s frames, for three reasons: (i) in my
view, understanding behaviour in non-neutral landscapes extends beyond ‘neu-
tral non-neutral’ landscapes (and it would be difficult to draw the line if we accept
the idea that people tend to have lucky numbers); (ii) at least the heuristic and
the LuckyNoEQm Nash-equilibrium variant described below are meant to apply
also under ‘truly non-neutral’ frames (much like the Nash-equilibrium with pay-
off perturbations considered in Crawford and Iriberri, 2007); and (iii) excluding
frames with clearly positive or negative connotations in our sample does not
change the results meaningfully but leaves us with less statistical power for the
analysis.’

Table 1 presents the origin of the data I use in this study, together with the

? Appendix C presents the main tables from the data analysis for the reduced sample. Most
importantly, the heuristic still has the lowest mean squared error for discoordination games and
the second-lowest mean squared error in the hide-and-seek games; at the same time, the best-
performing model for hide-and-seek games is among the worst-performing models for the other
games.



number of observations (in parentheses). The data for the hide-and-seek games
mostly comes from Rubinstein and Tversky’s (1993) and Rubinstein et al.’s (1997)
studies, only for the ABAA frame, I have additional observations from other stud-
ies for each game. For the discoordination games, Rubinstein et al. (1997) only
have data for six of the frames. I complement this with data on a different subset
of six frames collected for two studies run by Dominik Bauer and myself. Fi-
nally, I collected the data for the to-your-right and Blotto games specifically for
this study, to see whether the predictions and model implications also apply to a
new setting. A complete listing of all the data I use—old and new—can be found
in Appendix A.

I ran the to-your-right and Blotto games as the first part of (different) sessions
comprised of three parts, where I described each part only as it started. Only one
part was paid. If the first part was payoff relevant, the roll of a die selected one
of the to-your-right games (or Blotto games, in the Blotto sessions) for payment.
Participants played under all eleven frames with a randomised order, random
rematching, and without feedback between games. I described the to-your-right
game as follows:

There are four boxes. You and the other participant choose a box
without knowing the decision of the respective other. One of you
can obtain a prize of 12 Euros. Who wins depends on the relative
position of the two chosen boxes. The participant wins whose box
lies to the inmediate right of the box of the other participant. If a
participant chooses the right-most box, then the other participant
wins if he chooses the left-most box. Who does not win obtains a
consolation prize of 4 Euros. Of course, it is possible that neither
you nor the other participant wins.'

Participants had not participated in any other experiments using the same
type of non-neutral frames."!

To inform my heuristic and some of the other models I use on the game data, I
collected data from additional tasks in separate sessions. First, I conducted seven
sessions with a total of 140 participants that had a BETTINGTAsK as the first of
several parts (following the same procedures as with the to-your-right and Blotto
games). In the BETTINGTASK, participants faced the following task:

19Similarly, the instructions for the Blotto game read: There are four fields. You and the other
participant have to assign 40 units to the four fields without knowing the decision of the respec-
tive other. One of you can obtain a prize of 12 Euros. Who wins depends on how many fields
you can win. The participant who has placed more units on a field wins the field. The participant
who wins most fields overall wins the prize of 12 Euros. The other participant obtains a consola-
tion prize of 4 Euros. If both participants win the same number of fields, chance determines who
obtains which prize.

1T used z-Tree (Fischbacher, 2007) and orskE (Greiner, 2015).



In each decision situation you have to choose one out of several
boxes. Subsequently, one of the boxes will be randomly selected by
the cast of a die. In case the randomly-selected box coincides with
the box you chose, you receive 12 Euros. If the two boxes do not
coincide, you receive 4 Euros.

Next, I conducted three sessions with a total of 58 participants of a HIDERBET-
TINGTAsK. This task differs from the BETTINGTAsK only in that participants
receive the bigger prize if their choice does not coincide with the randomly-
selected box. Finally, I asked 96 participants to rate the options’ optic salience
(SALIENCERATING) and 102 participants to rate how well each of the boxes within
a frame represented all four boxes within that frame (REPRESENTRATING).” In
both tasks, participants saw the boxes in the same horizontal line-up as in the
other tasks. Below each box, they would have a slider (empty at the outset) to
indicate the level of optical salience (between “extremely conspicuous”, top, and
“extremely nondescript”, bottom) or representativeness (between “totally repre-
sentative”, top, and “not representative at all”, bottom).

3 The amended models and a simple heuristic

This section presents the models I use in the paper. As I argued in the intro-
duction, there are no ‘standard’ alternatives available that would come close to
explaining the data. Starting from the observation that the BETTINGTAsK choices
are surprisingly similar to the data from the different games, I construct two ‘sen-
sible’ level-k alternatives and an equilibrium with payoff-perturbations based
on the BETTINGTAsSK choices. Then, I compare the three amended models to
the standard Nash equilibrium, a standard level-k model with uniformly mix-
ing level-0, the salience-based level-k of Crawford and Iriberri (2007) (with an
empirically-defined level-0), and the simple two-step heuristic that ended up ex-
plaining the data surprisingly well. I start out with the equilibrium models, fol-
lowed by the level-k models and the heuristic, at the end.

NasHEQM. The unique symmetric mixed-strategy equilibrium that has both
players randomise uniformly over all locations.

12The rating tasks were included in BETTINGTASK and HIDERBETTINGTASK sessions. One could
argue that this procedure could bias the rating-task data. However, in particular the SALIENCER-
ATING data has so little variance and corresponds so well with intuition, that I see little value in
repeating the task in separate sessions. The REPRESENTRATING data has more variance, but I do
not use it to inform any of the models in Section 3.



LuckYNoOEgQm. A Nash-equilibrium variant in which participants derive ex-
tra utility from choosing certain locations (cf. Crawford and Iriberri, 2007). For
this model, I interpret the BETTINGTASK data as a measure of participants’ in-
herent preferences for the different locations.”® 1 compute utility values from
the BETTINGTAsK data and re-define the game in terms of these utility values: A
multinomial-logit utility model estimated by maximum likelihood yields utility
values that I transform in an affine-linear way (to obtain positive utility values).
Then, I calculate the mixed-strategy equilibria for the games that result when the
non-zero entries in the standard game matrix are replaced by the transformed
utility values. Finally, I use another layer of maximum-likelihood estimation to
obtain the transformation of utility values and probability of trembles by players
that yield the best-possible fit to the data. Note that the transformation of utility
values does not affect BETTINGTAsK choice under the multinomial-logit model,
but it does affect the calculated mixed-strategy equilibria.

Take the example of a discoordination game played on ABAA: (Absolute)
choice frequencies in the BETTINGTASK were 18, 46, 58, and 18. If these frequen-
cies are the result of a multinomial-logit choice process, the maximum-likelihood
estimates for utilities are -0.52, 0.42, 0.65, and -0.52. I recalibrate those utilities
to 0.65, 1.27, 1.43, and 0.65 (which are still in accordance with the BETTING-
Task choice frequencies) and use the recalibrated values as the corresponding
entries in the normal form game: when a participant chooses one of the end-as
and her opponent chooses another location, the participant’s utility will be 0.65.
Likewise, when she successfully discoordinates by choosing B, her utility will be
1.27. Using the resulting normal-form game, the unique symmetric equilibrium
(mixed) strategy would be (0, 0.47, 0.53, 0). As I point out above, I allow for errors
and allow the maximum-likelihood procedure to optimise over another layer of
utility-recalibration for the model comparison in part 4.1.

STANDARD Lk. The predictions of the standard level-k£ model with a uniformly
mixing level-0 coincide with those of the standard Nash equilibrium for the
games examined here. Therefore, the model will be subsumed under “NasaEQm”
for the remainder of the paper.

SALIENCE-Lk. Crawford and Iriberri’s (2007) level-k model in which level-0
follows salience, and level-k players with £ > 0 play a best-response to level-
(k — 1) players. Rather than making assumptions about what is salient, I use
data from the SALIENCERATING task as the level-0 to base the model on."* For

B30Of course, this assumes that people are homogeneous in what utilities they derive from the
different locations. This is a strong assumption, but it is the best approximation that I have.

47 yse the distribution of locations that participants ranked as most salient, to obtain a metric
that is comparable to the data from the BETTINGTAsk. Using the average salience rating for each

10



our discoordination-game example on ABAA, the first A is held to be the most
salient location by 2% of all SALIENCERATING participants, B by 91%, and the
two other As by 4% each. Therefore, we would expect level-0 to choose with
probabilities (0.02,0.91,0.04, 0.04), uneven levels to choose the first A, and even
levels to randomise between the other three locations.

BETTING-LEK. This level-k model uses as level-0 the data from the BETTING-
Task. In level-k theories, level-0 is supposed to be people’s intuitive reaction to
the game, which may well coincide with the choice they make in a lottery. In
the ABAA-discoordination-game example, betting proportions—and hence, level-
0 choices—are 13%, 33%, 41%, and 13%, uneven levels randomise between the end
As and even levels between the two locations in the middle.

BounDED Lk.  This model differs from standard level-k with a uniformly ran-
domising level-0 only in terms of level-1. It incorporates that level-1 players
may respond to uniform randomisation by non-uniform randomisation (or by
not randomising at all). The BETTINGTAsk and HIDERBETTINGTASK elicit what
participants do when facing uniform randomisation. Level-1 seekers will act
like participants in the BETTINGTASK, whereas level-1 discoordinators and level-
1 hiders will act like participants in the HIDERBETTINGTASK. For ABAA, the
HipeErBETTINGTASK choice frequencies are 9%, 53%, 21%, and 17%. Therefore, in
our discoordination-game example, level-0 would randomise uniformly, level-1
would choose with probabilities (0.09, 0.53,0.21,0.17), even levels would choose
the first A, and uneven levels of level-3 or higher would randomise uniformly
among all locations but the first A.

LuckYORANYTHING. The simple two-step heuristic meant to provide a bench-
mark to assess what drives the potentially better fit of the amended models—

basing them on ‘lucky numbers’ or including strategic reactions. An agent fol-

lowing the heuristic proceeds in the following two steps:

1. choose your ‘lucky number’. This is the choice you would pick in a lottery.
With a certain probability (1—p), end here. With the complementary prob-
ability, check whether the chosen option is a best-response if others pick
‘lucky numbers’, too (assuming that ‘lucky numbers’ are perfectly corre-
lated between players). If so, stick to your choice and end here. If not,

2. make a uniformly-random choice amongst the remaining options."

location does not change the results in any significant way.
15 Alternatively, this heuristic could be rationalised as being an abbreviation of the following

11



In the first step, agents are assumed to think about their choice again with
probability p. In principle, the probability p should be a constant (across games)
that is related to the personal characteristics of the individual, most notably,
with their tendency to re-assess first intuitions as measured, for example, by the
cognitive-reflection test (Frederick, 2005). For the purpose of this paper, however,
we will assume p to be the same for all participants.

According to the heuristic, seekers simply go by their lucky numbers: both
are happy to stick to their choice when thinking that their opponent is likely
to make the same choice. Discoordinators proceed to step 2 with probability p,
because discoordinators do not want to choose the same items and ‘lucky num-
bers’ will be correlated. Hence, they will choose ‘lucky numbers’ with probability
(1 — p), and uniformly-random amongst the ‘non-lucky numbers’ with proba-
bility p. The same prediction applies to hiders and to players in the ‘to your
right’ game. To test the heuristic against data from the Colonel-Blotto game,
we have to adapt its lucky-number step slightly as meaning that people deploy
their resources according to the ‘Tucky-numberedness’ of the options.’® Again,
a fraction p of Blotto players will conclude that playing ‘lucky numbers’ is not
a best-response to others playing lucky numbers, and proceed to uniform ran-
domisation amongst the ‘non-lucky numbers’. These predictions mean that the
LuckYORANYTHING heuristic has two general implications:

invariance the qualitative distribution of choices for a given frame follow the quali-
tative distribution of ‘lucky numbers’, irrespective of the game; here, the
“qualitative distribution” refers to which items are chosen the most often,
the second-most often, etc.; and

L-differential the prevalence of ‘lucky numbers’ is highest for seekers in the hide-and-
seek game (and coordinators; both play ‘non-lucky numbers’ only when

train of thought that players approaching a new situation might be following: “is there any
obvious best option for me (checking for obvious dominance)? If not, is it clear what the other
player will do (checking for obvious dominance for the other player)? If so, react correspondingly,
if not, do we both want the same? If so, what do we have to do to make the best out of it (use
team-reasoning)? If not, that is, if I still don’t know what to do, I'll just pick what sounds best to
me from among the options I have (step 1). Ah, wait, maybe I shouldn’t do that if the other player
does the same, should I (step 1b)? In that case, I'll just choose anything else (step 2).” Note that
dominance does not have a bite in the games I consider, and team-reasoning would only help in
the coordination games.

181t is unclear whether the ‘lucky-numberedness’ of an option can be measured by the fraction
of people choosing it as their most lucky number. In principle, it seems more sensible to elicit
participants’ individual lucky-number orderings over all locations (e.g., in a conditional betting
task, in which participants have to specify what they bet on if their most-preferred option is not
available) and then define the lucky-numberedness of the options by the resulting distribution of
Iucky-number orderings. Given we do not have this data, the best we can do is to assume both
orderings will be correlated and to use the data we have.
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making an error). Hiders, discoordinators, and ‘to-your-righters’ rely on
‘lucky numbers’ to the same (lower) degree.

Because ‘lucky numbers’ will not be the same for everybody, sampling partici-
pants into the experiment will introduce randomness in the aggregate data. This
may change the qualitative choice pattern when the ‘lucky-number’ pattern is
weak, but it should rarely do so when the pattern is strong. Hence, we obtain a

third implication:

the better, the stronger the ‘lucky-number’ pattern is.

4 Results

4.1 Accounting for behaviour

predict-differential the LuckyORANYTHING heuristic accounts for the qualitative data pattern

model fitted on LoglL MSE  modes predicted  parameters
BETTING-LEK discoordination -2980  0.0056 5 out of 11 3
NASHEQM/STANDARD Lk -2975  0.0045 2.75" out of 11 —
SALIENCE-LK -2972  0.0039 6 out of 11 3
BounpED Lk -2967 0.0034 7 out of 11 3
LuckyNoEom -2960 0.0038 6 out of 11 3
LuckyORANYTHING -2959  0.0039 6 out of 11 1
NaASHEQM/STANDARD Lk hide & seek ~ -2412  0.0160  (2,2) out of (8,8) —
LuckyNoEgm -2361 0.0116  (0,8) out of (8,8) 3
SALIENCE-Lk -2356  0.0126  (2,6) out of (8,8) 5
BouNDED Lk -2340  0.0089  (5,6) out of (8,8) 5
LuckYORANYTHING -2319  0.0081  (8,8) out of (8,8) 1
BETTING-LE -2299  0.0066  (8,6) out of (8,8) 5
SALIENCE-LK hide & seek +  -5595 0.0388 12 out of 27 5
NasHEQM/STANDARD Lk discoordination  -5392  0.0113 9f out of 27 —
LuckyNoEgm -5334  0.0095 14 out of 27 3
BouNDED Lk -5319  0.0072 18 out of 27 5
LuckYORANYTHING -5280  0.0066 22 out of 27 1
BETTING-LK -5279 0.0065 21 out of 27 5

TExpected number of correctly-predicted modes under uniform randomisation.

Table 2: Performance of the models in terms of data fitting, ordered by log-

likelihood.

Observation. The amended models generally fit the data better than the stan-
dard game-theoretic models.
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Looking at Table 2, the amended models (BETTING-Lk, BOUNDED LK, and
LuckyNoEqQm) generally outperform their corresponding standard model (STANDARD
Lk and NasHEQM) both in terms of exhibiting a larger log-likelihood and a smaller
mean squared error (MSE). Only in the discoordination game, BETTING-Lk per-
forms worse than STANDARD Lk, albeit predicting more of the prediction modes.

Result 1. None of the amended models fits the data consistently better than
the simplistic LuckYORANYTHING heuristic, which on top has fewer parameters
than the amended models.

Looking at the upper part of Table 2 again, the LuckYORANYTHING heuristic
exhibits the largest log-likelihood of the models when fitted on discoordination-
game data.'” It is outperformed in terms of the mean squared error (MSE) by
SALIENCE-LK and LuckyNoEgm, and in terms of both the MSE and the number
of choice-distribution modes correctly fitted by BounpeD Lk. However, each of
these four models performs clearly worse than LuckYORANYTHING when fitted
on hide-and-seek data, as the middle part of Table 2 shows. Here, BETTING-
Lk—which LuckyORANYTHING outperformed clearly in the upper half of Table
2—takes on the role of the main contender, with higher log-likelihood, lower
MSE but less correctly-fitted modes. When fitted on all three player roles si-
multaneously (lower part of Table 2), BETTING-Lk and LUCKYORANYTHING go
head-to-head on all three criteria.

So, while LuckYORANYTHING does not dominate any of the other models, it
always performs best on at least one criterion, and it does so using only one free
parameter as opposed to three (for the discoordination data) or five (for the hide-
and-seek data) as in the amended level-k models. As further suggestive evidence,
the fitted BouNDED LE has virtually only levels 0 (uniform randomisation) and 1
(BETTINGTASK/HIDERBETTINGTASK), no matter which game the model is fitted
on (a combined 100% if fitted on discoordination, 88% if fitted on hide and seek).

4.2 The invariance implication

The LuckyORANYTHING heuristic predicts that the qualitative data pattern in all
games will be the same as that of the corresponding BETTINGTAsK. Looking at
the modes as a first, crude measure, this prediction seems to hold for hiders and
seekers (16 out of 16 modes correctly predicted), and to a lesser degree also for
to-your-right players (8 out of 11), discoordinators and Blotto players (both times

7To fit the models, I calculate the predicted marginal probabilities as a function of the model
parameters (for level-k models, the level distribution, for LuckYORANYTHING, the ‘re-thinking
probability’ p). Using those marginal probabilities, I calculate the likelihood of the observed
samples. The maximum-likelihood algorithm then optimises over the parameter values.

14



Spearman coefficient p—value

hiders 0.63 0.000
seekers 0.60 0.001
discoordinators 0.24 0.122
to-your-right players 0.50 0.001
Blotto players 0.41 0.007

Table 3: Correlations of ranks: game data and BETTINGTASK data.

6 out of 11).'"® While the modes are interesting, the invariance implication speaks
about the complete distribution. Table 3 presents the Spearman correlations of
ranks between the game data and the BETTINGTAsk data for each of the player
roles.

Result 2. Invariance tends to hold: the correlation of ranks between the game
data and the BETTINGTAsK data is strong and significant for hiders, seekers, to-
your-right players, and Blotto players, and still sizable for discoordinators.

As Table 3 shows, the correlation of ranks between the game data and the
BETTINGTASK data is 0.63 for hiders, 0.60 for seekers, 0.50 for to-your-right play-
ers, and 0.41 for Blotto players (all p < 0.007). The rank correlation for dis-
coordinators is 0.24 (p = 0.122). At the same time, all predictions are clearly
better than the predictions made by random choice. To see that, I calculate the
mean squared difference in ranks between the game data and the BETTINGTASK
data, and compare this difference to the difference to be expected under ran-
dom choice. To compare the mean squared rank differences to the BETTINGTAsK
with that to the random-choice benchmark, I draw for each frame 100’000 sets
of 110 draws from a uniform distribution over four items and convert the sets to
rankings.” I then compare the mean squared rank difference between the game
data and the BETTINGTASK to the distribution of mean squared rank differences
from the simulation, by means of a Kolmogorov-Smirnov test (bootstrapped to
correct for the discreteness of the rankings). The corresponding p-values are all
p < 0.042.%

8There is nothing systematic to be learnt from the deviations: the frames on which the dif-
ferent games deviate from the prediction overlap only partially, and when they do, the modes
coincide in only 2 out of 5 cases.

19T chose 110 draws to match the median number of observations in my data set.

2 Another way of looking at the question is to locate the median mean squared rank difference
of a game with the BETTINGTAsk data within the simulated distribution of differences to random
play. Here, we note that the median mean squared rank difference over all frames is always
between 0.7 and 1.3 of a standard deviation (of the simulated random-play distribution) lower
than the median of the simulated distribution.
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fitted prob(‘lucky numbers’) in %

seekers 77
hiders 45
discoordinators 30
to-your-right players 15
Blotto players 9

Table 4: Fitted probability of choosing by ‘lucky numbers’ for each player role.
NoTE: in the absence of errors, seekers should play ‘Tucky numbers’ in 100% of the cases, while the other player roles
should play ‘lucky numbers’ with the same probability (which is different from the heuristic’s p: for ease of interpretation
of the above exercise, we calculate the optimal weight in a mix with uniform randomisation over all options rather than

with ‘non-lucky numbers’ only).

4.3 L-differential

The LuckYORANYTHING heuristic predicts that seekers should be relying on
‘lucky numbers’ the most, because those who reconsider their choice would stick
to it. The heuristic does not distinguish between the degrees to which hiders,
discoordinators, and players of the to-your-right game should rely on ‘Tucky
numbers’. To test the L-differential implication, I calculate the mix of ‘lucky-
number’ choices and uniform randomisation that best explains the data sepa-
rately on hiders, seekers, discoordinators, and to-your-right players, and report
the fitted proportion of ‘lucky-number’ choices for each of them in Table 4.

Result 3. L-differential holds partially: while seekers are clearly the most likely
to rely on ‘lucky numbers’, there also is a difference among the other player roles.

Table 4 clearly shows that seekers are the most likely to play according to
‘their lucky numbers’. Whether there is a difference between the other player
roles is unclear at first sight: they may all have a propensity to choose by ‘lucky
numbers’ of around 30%, but there also seems to be a clear difference between
hiders and to-your-right/Blotto players that the heuristic does not account for.
Likelihood-ratio tests reveal that all of the differences reported in Table 4 are
significant (with p < 0.021), except for the difference between to-your-right and
Blotto players (p = 0.485).2!

21To obtain these p-values, I run maximum likelihood estimates for each role with the probabil-
ity of uniform mixing being constrained to each of the other estimates. The Likelihood-ratio test
then compares the maximum likelihood of the constrained and the unconstrained estimations.
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4.4 Predict-differential

In the preceding two sections, I presented evidence that the two implications
invariance and L-differential offer considerable guidance in understanding be-
haviour. Yet, none of the two implications holds perfectly. As also implied by the
heuristic under random sampling of participants, we can use information from
the BETTINGTASK data to identify the frames in which the heuristic fits better.

Result 4. There is a positive correlation between the predictive accuracy of the
LuckYORANYTHING heuristic and the strength of the Tucky-number’ pattern.

I measure the strength of the ‘lucky-number’ pattern by the difference be-
tween the relative frequencies of the most popular and the least popular choices
in the BETTINGTASK. Then, I relate this difference to the mean squared rank dif-
ference between game data and LuckyORANYTHING prediction, for each player
role. I find that all five correlations are negative (for discoordinators, hiders,
seekers, to-your-right and Blotto players). The probability of all five correlations
showing as negative if there was no true relationship is p = (1)® = 0.03125.

4.5 Individual-level data

Some readers of an earlier version of this paper commented that it would be ex-
tremely useful to obtain individual-level data, in the sense of having the same
people go through the BETTINGTAsk and playing (some of) the games. While I
was (and still am) somewhat sceptical about this procedure—for reasons I will dis-
cuss below—I heeded the commenters’ advice and ran three additional sessions
(with a total of 82 new participants). In the sessions, participants would play
hide-and-seek (in one of the roles), discoordination, and to-your-right games on
all eleven frames before doing the BETTINGTASK on all frames.

In particular, a participant would have played a discoordination game on one
frame, a hide-and-seek game on another frame, a to-your-right game on the next
frame, and then the next discoordination game on a fourth frame, and so on,
until all games had been played on all frames. The order of the eleven frames
was randomised individually (and then repeated four times). I also randomised
the starting games and a participant’s opponents for each of the three randomly-
selected payoff-relevant decisions. Thus, participants de facto faced a protocol
with random-rematching after each round and game, and without any feedback
in between.

The left column of Table 5 shows the predictive success of choices in the BET-
TINGTASK for choices in the different games under the corresponding frames.
What is obvious is that the average probability of choosing the same option as
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fraction of betting-like choices (in %) fraction of players (in %)

discoordinators 30 63 (p = 0.020)
to-your-right players 28 60 (p = 0.097)
seekers 32 63 (p=0.117)
hiders 33 59 (p = 0.349)

Table 5: Relative frequency of choices for each game that where identical to
the chosen option under the same frame in the BETTINGTAsK (left); relative fre-
quency of participants who chose the same option as in the BETTINGTASK more
often than at chance level (right; binomial-test p-values in parentheses).

To-your-right Hiding Seeking

Discoordination  0.265 (p = 0.016)  0.792 (p < 0.001)  0.004 (p = 0.981)
To-your-right 0.462 (p = 0.002)  0.362 (p = 0.020)

Table 6: Pearson coefficients correlating the frequency of betting-like choices in
pairs of games/roles.

in the corresponding BETTINGTAsK is always higher than chance (25%). Simi-
larly, the fraction of players choosing the same option as in the corresponding
BETTINGTASK more often than 25% of the time (displayed in the right column of
Table 5) is always higher than 50%. In addition, the figures for seekers are always
among the highest of the four values. However, they are far from being as high
as we should have expected if the heuristic was an accurate model of the choice
process.

Could it be that only a subset of participants can be described well be the
heuristic? In that case, participants’ frequency of betting-like choices in one
game should be correlated with the same participants’ frequency of betting-like
choices in another game. And indeed, this is the case for most combinations
we can examine, as depicted in Table 6 where 5 out of 6 correlations are sub-
stantial and significant. At the same time, histogrammes of the frequencies of
betting-like choices (not depicted here) do not show any clear trace of a bimodal
distribution. So, while there seems to be a personality-related proneness to using
one’s ‘lucky number’ also outside of lotteries, the individual-level dataset shows
no clear evidence of participants following the LuckYORANYTHING heuristic.

Having said this, the individual-level data has to be treated with some cau-
tion when it is used for assessing the type of models referred to in this paper. In
particular, level-k is meant to explain the choices people make when they see a
game for the first time, and the heuristic cannot sensibly be expected to explain
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anything else, either. However, people may think about a certain frame (like
ABAA) very differently the first time they face this frame compared to if they
have faced the same frame in a different game altogether. Although participants
did not receive any feedback during the experiment, it thus may be a different
thing to play hide-and-seek on an ABAA frame if you have already played a dis-
coordination game on the same frame, compared to if hide-and-seek is the first
(and only) thing you play on that frame. The fact that the data patterns result-
ing in the individual-level experiment tend to be rather different from the data
patterns we know from the stand-alone treatments might give some credence to
the argument presented here.*

4.6 Relating ‘lucky numbers’ and other concepts

As a final point, I relate ‘Tucky numbers’ to characteristics of the labels within
their frame. As characteristics, I use subjective and relatively objective criteria.
As objective criteria, I include relative position (0.5 for the middle, 1 for the right-
most locations) and valence (positive, negative, or neutral). Subjective criteria
are salience and representativeness, which I objectivise by measuring students’
assessment of them (in SALIENCERATING and REPRESENTRATING; representative-
ness is important for choice among evidently equivalent items, cf. Bar-Hillel,
2015). Table 7 reports the corresponding regression.

Observation. Several characteristics interact to make an item a ‘lucky number’,
among them salience, position, and valence.

As we can see from the Table, there seem to be four characteristics that in-
crease the relative frequency of an item being picked in the BETTINGTASK: (i)
being rated as more salient, (ii) being positioned in the middle (to see this, com-
bine relative position and its square); (iii) having a positive connotation when the
item is salient (in the context of our frames, this essentially means that the pos-
itively connoted item is presented along with three negatively connoted items);
and potentially, (iv) being rated as being representative. While this analysis has
to be taken with caution because the set of frames is rather peculiar, it may serve
as a first indication of what may determine ‘lucky numbers’ in general.

5 Discussion

In this paper, I have looked at games in which players’ strategies are indistin-
guishable once we remove the strategies’ labels. Many of these games are at

22The data from the individual-level experiment is shown in Appendix D.
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coefficient  s.e.  p-value

(Intercept) —0.21 (0.14) 0.1461
negative 0.01 (0.12)  0.9425
positive ~0.11 (0.08)  0.1959
SALIENCERATING 0.43 (0.13)  0.0020
REPRESENTRATING 0.25 (0.13)  0.0693
relative position 0.62 (0.11) 1-10°°
(relative position)? —0.54 (0.10) 5-10°°
negative-SALIENCERATING —0.26 (0.22) 0.2574
positive-SALIENCERATING 0.33 (0.15)  0.0364
R? 0.72

Adj. R? 0.66

Num. obs. 44

Table 7: Regression of relative choice frequencies in the BETTINGTAsK on label
characteristics.

the heart of game-theoretic reasoning, at the same time as capturing important
elements of every-day life. This paper focuses on versions of the games that
incorporate a key aspect of reality, namely that options carry descriptive labels.

Using data from both earlier studies and new experiments, I identify four
characteristics of the data that none of the popular models accounts for: (i) the
qualitative choice distribution tends to be the same, irrespective of the game
being played;* (ii) the data pattern is strongly correlated with ‘lucky numbers’,
the options people bet on in a lottery; (iii) seekers rely on ‘lucky numbers’ the
most; and (iv) the stronger the ‘lucky-number’ pattern deviates from uniform
randomisation, the more likely we will observe it also in the game data.

I adapt two of the most popular models, Nash equilibrium and level-k, in
straightforward ways to accommodate some of the above characteristics. The
amended models clearly do better in accounting for the data than the standard
models. At the same time, none of the amended models beats a simple bench-
mark in which participants play their ‘lucky numbers’ and (only) sometimes re-
consider, in which case they under certain conditions mix uniformly among the
‘non-lucky numbers’. Moreover, the simple benchmark model accounts for all
four characteristics, while the amended models do not.

ZModels that predict uniform randomisation like the standard Nash-equilibrium do predict
ex-ante invariance to the game. However, when sampling from a uniform distribution for two
different games, we would not expect invariance in the rank distributions, which is what we
observe in the data.
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Is this benchmark model an adequate representation of people’s choice pro-
cess? Probably not. The reason for why it performs so well is that it captures
well two important aspects of the choice process. First, people seem to be at-
tracted by ‘lucky numbers’ in all games. And second, their strategic reaction to
others favouring ‘lucky numbers’ seems to be weaker and less directed than the
‘best-response’ concept suggests.

People’s strategic reaction seems to be systematic only in the sense that hide-
and-seek-game seekers rely on ‘lucky numbers’ the most—which makes sense if
players sometimes check whether their action would be a good idea if others
also play ‘lucky numbers’. However, it is not as strategic as our standard models
like Nash equilibrium or level-k would prescribe: there is no evidence of several
layers of best-responding behaviour or even mutual best-responding.

In summary, the common models of strategic behaviour probably err on the
side of ascribing too much strategic reasoning to the average participant in our
experiments. The heuristic I have presented here is likely to err on the other
side. And yet, it seems to capture important elements of decision-making. The
heuristic thus should be seen as a thought-provoking impulse to help us finally
get to grips with the conundrum we face since the papers by Rubinstein, Heller,
and Tversky.
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Appendix A Full data

Player role frame location 1 location 2 location 3 location 4

coordinators 86 0 10 4
6 54 12 28
6 6 14 74
14 72 13 1
- - 6 88 6 0
hate-detest-love-dislike 2 6 88 4
1-2-3-4 38 17 29 15
AABA 5 27 54 14
discoordinators et e P 39 14 18 29
de-honest-friendly 28 20 32 20
oA

2 17 27 23 33
18 21 38 24
- e B R 17 40 29 15
hate-detest-love-dislike 16 29 26 29
1-2-3-4 21 32 30 17
AABA 26 24 32 18
Ace-2-3-Joker 31 17 21 31
BAAA 34 23 19 23
AAAB 31 22 18 29
hiders 23 23 43 11

15 26 51
21 26 34 19
15 29 33 23
. 15 40 34 11
hate-detest-love-dislike 11 23 38 28
1-2-3-4 25 22 36 18
AABA 22 35 19 25

seekers 29 24 42
8 40 40 11
7 25 34 34
9 21 53 17
B 16 55 21 8
hate-detest-love-dislike 20 21 55 14
1-2-3-4 20 18 48 14
AABA 13 51 21 15
to-your-right players 15 30 32 24
polite-rude-honest-fri 22 22 33 24

W
18 22 33 27
15 19 34 32
e 16 20 33 31
hate-detest-love-dislike 23 17 30 30
1-2-3-4 17 21 39 23
AABA 22 23 29 26
Ace-2-3-Joker 25 23 31 21
BAAA 15 26 34 25
AAAB 24 23 28 25
Colonel-Blotto players heat et 30 26 26 18
polite-rude-honest-friendly 26 25 26 22
- iy L

24 26 28 22
23 29 24 24
R LA B - 2% 2% 2
hate-detest-love-dislike 25 23 30 21
1-2-3-4 24 25 26 25
AABA 24 25 28 23
Ace-2-3-Joker 26 26 24 24
BAAA 29 25 26 20
AAAB 24 26 25 24

Table A.1: Full data of the games (relative choice frequencies; for Colonel Blotto:
average proportion of troops).



Task frame location 1 location 2 location 3 location 4

BETTINGTASK 25 29 36 11
12 8 53 27
16 34 35 16
13 33 41 13
A B 6 58 26 11
hate-detest-love-dislike 7 12 69 12
1-2-3-4 18 21 36 25
AABA 13 36 36 15
Ace-2-3-Joker 33 14 19 34
BAAA 27 25 24 24
AAAB 18 21 34 26
HIipERBETTINGTASK A 40 19 19 22
:hon_est—friendly 12 17 50 21
RPN 24 17 28 31
9 53 21 17
PR B I 14 59 16 12
hate-detest-love-dislike 12 14 53 21
1-2-3-4 19 28 31 22
AABA 26 19 40 16
Ace-2-3-Joker 28 14 29 29
BAAA 31 24 19 26
AAAB 16 22 22 40
REPRESENTRATING S IR 10 32 27 31
polite-rude-honest-friendly 34 7 26 32
N # 38 32 27 3
_ ABAA 38 5 30 28
IS I I 29 19 30 21
hate-detest-love-dislike 34 15 20 30
1-2-3-4 33 23 16 28
AABA 34 23 8 35
Ace-2-3-Joker 39 15 17 29
BAAA 11 35 25 29
AAAB 43 25 24 8
SALIENCERATINGT 94 2 4 0
14 57 21 8
5 6 8 81
2 91 4 4

13 72 11
hate-detest-love-dislike 16 19 62 3
1-2-3-4 38 21 25 16
AABA 3 4 93 1
Ace-2-3-Joker 28 3 3 66
BAAA 92 3 5 0
AAAB 5 6 3 86

TIn case a participant rated several items as most representative/most salient, her count would be evenly distributed on
all corresponding locations.

Table A.2: Full data from the complementary tasks (relative choice frequencies;
for the RATING tasks: relative frequencies of location ranked the highest).
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Appendix B Analysis of the coordination-game data

The coordination-game data is explained best by participants choosing what they
see as the most salient option. The top part of Table 2 shows that this is in
accordance with the SALIENCE-Lk model but not with BETTING-Lk, BOUNDED-
Lk, or the heuristic (I omit the Nash-equilibrium and the LuckYNoEgQm models
here as they do not make a unique prediction). We know from earlier studies
that in pure coordination games, team reasoning often is important (Bardsley
et al.,, 2010). We did not include team reasoning here, as (i) in our coordination
games, it would make the same prediction as SALIENCE-Lk, and (ii) it does not
help predicting behaviour in any of the other games.

model fitted on LogL MSE  modes predicted parameters
STANDARD Lk coordination -1027  0.0782 2f out of 8 —
BETTING-LEK -951  0.0616 3 out of 8 2
LuckyORANYTHING -951  0.0600 3 out of 8 —
BouNDED Lk -945  0.0635 3 out of 8 3
SALIENCE-LK -885  0.0154 8 out of 8 2

TExpected number of correctly-predicted modes under uniform randomisation.

Table B.1: Performance of the models in terms of data fitting, ordered by log-
likelihood.
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Appendix C “Neutral non-neutral” frames only

model fitted on Logl. MSE modes predicted parameters
BETTING-LE coordination -627  0.0376 1 out of 3 2
BouNDED Lk -626  0.0389 1 out of 3 3
SALIENCE-LK -684  0.0234 3 out of 3 2
LUCKYORANYTHING -684  0.0225 3 out of 3 0
BETTING-LEK discoordination -2635 0.0033 3 out of 6 3
NasuEQm -2637  0.0036 1.5% out of 6 -
SALIENCE-LK -2635  0.0032 3 out of 6 3
BouNDED Lk -2632  0.0032 5 out of 6 3
LuckyNoEom -2623  0.0027 2out of 6 3
LuckYORANYTHING -2621  0.0026 4 out of 6 1
NasHEQM hide & seek -1615  0.0135  (.75,.75)* out of (3,3) —
LuckyNoEom -1572  0.0094 (0,1) out of (3,3) 3
SALIENCE-Lk -1604  0.0225 (0,3) out of (3,3) 5
BoUNDED Lk -1579  0.0091 (1,3) out of (3,3) 5
LuckYORANYTHING -1558  0.0071 (3,3) out of (3,3) 1
BETTING-LE -1540  0.0042 (3,3) out of (3,3) 5

fModel includes a tremble with 1% probability to take care of zero-probability events. The fit improves further when
allowing for more randomisation (e.g., 20% randomisation, LogL = -603, MSE = 0.0106). Expected number of correctly-
predicted modes under uniform randomisation.

Table C.1: Data-fitting performance of the models, order as in the main text (by
LogL of the original estimate).

Spearman coefficient p—value No. of frames

hiders 0.47 0.118 3
seekers 0.67 0.025 3
discoordinators 0.28 0.185 6
to-your-right players 0.37 0.078 6
Blotto players 0.30 0.149 6

Table C.2: Correlations of ranks: game data and BETTINGTASK data.

fitted prob(uniform mixing) in %

seekers 0
hiders 59
discoordinators 65
to-your-right players 79
Blotto players 92

Table C.3: Fitted probability of uniform mixing for each player role.
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Appendix D Individual-level data

Player role (No. participants) frame location 1 location 2 location 3 location 4

discoordinators (82) 34 29 16 21

32 26 27 16

33 27 20 21

24 27 27 22

S 24 21 28 27

hate-detest-love-dislike 22 23 27 28

1-2-3-4 30 20 17 33

AABA 24 17 24 34

Ace-2-3-Joker 29 22 27 22

BAAA 30 17 26 27

AAAB 24 20 24 32

hiders (41) L e Gl 37 22 17 24

polite-rude-honest-friendly 27 17 41 15
e i

o 39 22 22 17

24 24 20 32

- -| 32 20 20 29

hate-detest-love-dislike 17 32 15 37

1-2-3-4 24 15 29 32

AABA 24 27 20 29

Ace-2-3-Joker 34 20 12 34

BAAA 32 27 7 34

AAAB 24 34 20 22

seekers (41) 49 15 12 24

15 29 29 27

29 22 22 27

7 59 10 24

10 41 34 15

hate-detest-love-dislike 15 12 59 15

1-2-3-4 22 17 37 24

AABA 10 22 46 22

Ace-2-3-Joker 24 12 22 41

BAAA 41 20 17 22

AAAB 15 17 27 41

to-your-right players (82) SN oo e 22 28 29 21

polite-rude-honest-friendly 27 26 22 26
e i

o 18 26 28 28

10 30 26 34

*v -| 9 30 37 24

hate-detest-love-dislike 20 17 38 26

1-2-3-4 17 26 28 29

AABA 18 26 37 20

Ace-2-3-Joker 27 23 23 27

BAAA 26 27 28 20

AAAB 26 22 30 22

BETTINGTASK (82) 23 23 33 21

18 24 34 23

16 18 30 35

16 27 34 23

17 29 29 24

hate-detest-love-dislike 18 23 34 24

1-2-3-4 24 22 30 23

AABA 22 24 24 29

Ace-2-3-Joker 24 22 22 32

BAAA 27 18 30 24

AAAB 20 23 28 29

Table D.1: Relative choice frequencies (in %), individual-level experiments.
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