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Abstract: People o�en cannot assign a clear probability to an event but face uncertainty about their sub-

jective probabilities. We model belief uncertainty by assuming that agents’ beliefs are characterized by a

distribution over subjective-probability distributions that agents cannot access directly. Our model produces

stochastic choice because each decision-relevant belief is but one realization out of the distribution over all

possible beliefs. Our model predicts that when comparing unknown situations to routine choices, people

will make more ex-ante suboptimal choices in unknown situations. �e model also offers an explanation

for experiment participants not playing a best-response to their stated beliefs: participants are uncertain

what belief to report or base their decision on, and hence, act on momentaneous ‘belief realizations’. In an

experiment, we exogenously manipulate participants’ belief uncertainty. We find support for both predic-

tions. Low belief uncertainty leads to fewer errors and thus, higher earnings, even when controlling for the

accuracy of participants’ beliefs. Second, under low belief uncertainty, observed best response rates are high

and increasing in the amount of information we provide. Conversely, high belief uncertainty leads to lower

consistency.

JEL classification: C91, D81, D83

Keywords: Stochastic choice, Belief-Action Consistency, Belief Elicitation, Discoordination Game

1 Introduction

�is paper is about the consequences of uncertainty in people’s subjective beliefs for their decision-

making. To examine these consequences, we propose a new way of thinking about subjective

beliefs, and show how this leads to stochastic choice. In particular, we relate people’s belief uncer-

tainty to the likelihood of suboptimal choices, and to the degree of consistency we should expect

§We thank Fabian Dvořák, �omas Ha�enbach, Georg Weizsäcker, Ian Krajbich, Wieland Müller, Tomasz Strza-
lecki, Wolfgang Luhan, Alexander K. Wagner, Simon Gächter, Roberto Weber, Nick Netzer, the research group at the
�urgau Institute of Economics, the members of the Graduate School of Decision Sciences of the University of Kon-
stanz, as well as participants of the �urgau Experimental Economics Meeting (theem) 2017 and the ESA European
Meeting 2017 for helpful comments. Note: the order of authors in the header does not convey information on individ-
ual contributions. �e authors have multiple projects together and agreed to alternate between being first and second
authors. Contact: Chair of Applied Research in Economics, University of Konstanz, Universitätsstraße 10, D-78464
Konstanz, Germany.
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when a person has to make multiple similar or even identical decisions. We claim that the person’s

behavior will be more inconsistent and error-prone the higher the degree of uncertainty in her

belief. At a first glance, it sounds hardly surprising that more uncertainty leads to more errors.

But there are three aspects we want to stress. First, belief uncertainty does not imply indifference

or near-indifference. An agent may be uncertain as to the probability of an event while clearly

favouring a certain action. Second, we are talking about decisions that are suboptimal ex ante, not

decisions that turn out to bemistakes only ex post. And third, there is nothing in standard economic

theory that would relate uncertainty to ex-ante suboptimal decisions. �e only widely recognized

connection between uncertainty and the quality of decisions is through the expected costs of er-

rors, as in models involving Fechner-type errors. However, in this paper, we relate uncertainty to

ex-ante suboptimal decisions controlling for the expected cost of making an error.

To motivate what we mean by uncertain beliefs, consider the following example: We know for sure

what the odds of a fair coin flip are. When offered a bet on this coin flip, it is easy to see whether

it is worth accepting the bet or whether the odds-maker tries to trick us. Now imagine a colleague

offers you a bet over a bo�le of wine on your favorite football team winning the next match. It

is the final match for the championship, your team is the home team, and your team performed

be�er overall during the season. But then, one of the top scorers of your team is injured. So, you

start thinking about your belief on how likely your team is to win the match. You would probably

say: err, let me see, probably chances are 50% that they win. But just how certain would you be

that it’s not 60%, or 40%, for that ma�er?

Both for the coin flip and the football match it would be sensible to report a fi�y-fi�y belief when

asked for it. However, there is some difference in confidence about that statement. For the coin

flip, there is no sensible answer other than fi�y-fi�y. For the football-match, it could be also 60%

or 40%, while fi�y-fi�y seems like a reasonable average answer. Arguably, people face this kind of

uncertainty about the probability of events very o�en. Most of the time, they would not even be

able to put real numbers on the probabilities. For our purposes, however, it suffices to model the

general situation in terms of compound risk, rather than in terms of uncertainty in its narrower

sense.

In this paper, we show empirically that such uncertainty ma�ers. One important realization is that

more information on an uncertain event does not always lead to more consistent behaviour. In

fact, when new information contradicts a person’s prior belief, the uncertainty in that person’s

posterior belief will increase in the amount of information over a certain intervall. Showing these

relationships empirically is important for modelling the stochasticity of choice. As a second con-

tribution, we offer a simple model that accounts for the observed effects. In particular, we offer a
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model of stochastic choice and belief reports, where the stochasticity is due to belief uncertainty.

In our model, we follow the standard Bayesian approach of assuming that agents have subjective

probabilistic beliefs over the sources of uncertainty they face. In our example of which football

team is going to win the match, the agent’s assessment therefore is a probability distribution over

probabilities. Generally, such a probability-distribution over probabilities simply defines a com-

pound lo�ery. Standard models assume that agents can reduce this compound lo�ery to a simple

lo�ery, and the resulting probability assessment is then interpreted as ‘the belief’.

However, we assume that beliefs are ‘elusive’: agents cannot directly access the probability distri-

bution over probabilities and hence, they cannot reduce it. Rather, when acting and when reporting

a belief, agents will sample a probability from the probability distribution and react to the randomly

drawn probabilities as if they were the true probability.1 We call the distribution over probabilities

a belief distribution, because it is a distribution over different possible beliefs. If the underlying

belief distribution is spread out and many different beliefs are likely to be drawn, the agent is un-

certain about what the ‘true’, that is, the reduced probability is. We call the variance of the belief

distribution its belief uncertainty.2

Our model has important implications. It will produce stochastic choice, and agents will make

errors, where we define an error as a choice inconsistent with the reduced probability under

the agent’s belief distribution. Moreover, the variance of an agent’s expected choice in a given

situation—and hence, the probability of the agent making an error—will depend on the variance

of the belief distribution. �is will be the case even when the reduced probability is held con-

stant. �us, our model relates the uncertainty of a situation to the likelihood of ex-ante suboptimal

choices. To the best of our knowledge, this feature is unique to our model.

Relating uncertainty to suboptimal behavior is important because many of the important decisions

we make in life are decisions that are rarely repeated—and therefore, characterized by a high de-

gree of uncertainty. Uncertainty also plays a critical role, for example, in investment decisions.

�ere is a whole literature on whether investment decisions will be affected by uncertainty, and

in what way (e.g., Guiso & Parigi, 1999). While the empirical literature o�en relates to uncertainty

in its narrower sense (e.g., Baker, Bloom & Davis, 2016), the theoretic arguments mostly focus on

compound risk. Our study can inform this literature in that uncertainty will not only affect ra-

tional decision-making in predictable ways, but that it will also increase the prevalence of ex-ante

erroneous investment decisions. A prediction of our model therefore would be that following a

1A similar idea is the idea of discovered preferences, see Plo� (1996) or Cubi�, Starmer & Sugden (2001).
2See Pouget, Drugowitsch, & Kepecs (2016) for a neuroscience perspective on uncertainty. Just like we do, the

authors define uncertainty about some proposition as the variance of a posterior distribution (p. 369).
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Figure 1: Literary evidence of capricious decision-making by academic supervisors (source:
h�p://phdcomics.com/comics/archive.php?comicid=806, last accessed on 4th December, 2017.).

time of high uncertainty we should see a higher number of bankruptcies particularly of small firms

compared to a�er a time of li�le uncertainty.

Our study further will help to understand capricious decision-making by managers and others in

similar positions, that may lead to tremendous inefficiencies in the aggregate. �e cartoon in Figure

1 provides indirect evidence for the pervasiveness of this phenomenon also in our profession (if

the phenomenon was inexistent, the cartoon would not be amusing to anybody). Our model may

also contribute to our understanding of what happened before the latest financial crisis: it has been

argued that the financial products being traded before the crisis got so complicated that it was im-

possible for investors to assess the risk the products came with.3 Consequently, the products were

associated with a high degree of uncertainty. However, by our model, high degrees of uncertainty

are related not only to a high risk of failure, but also to an increased likelihood of ex-ante subop-

timal choices; in this perspective, traders not only may have taken excessive risks, but they may

have taken too many risks with negative expected value.

By introducing a new form of stochasticity, our model also provides a new perspective on learning

in unknown situations. When facing a decision for the first time, belief uncertainty is likely to be

high. In our model, this leads to high error rates. Hence, there is scope—and need—for learning.

As the situation is repeated with feedback, the agent gathers more and more observations. In most

situations, gathering more information will decrease the variance of the belief distribution, leading

to less errors. Hence, the agent learns how to behave in the situation by identifying the situation

be�er and be�er, evenwhen there is no change in the reduced belief. �is sets us apart, for example,

3See, e.g., Gorton (2009).
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from models of belief-based learning like fictitious play or Cournot learning.

Finally, the stochasticity due to belief uncertainty also concerns ourselves as researchers inter-

preting results from economic experiments. It provides an explanation for the widely varying

belief-action-consistency rates reported in the literature.4 Moreover, it provides an explanation for

the observations of Bao, Duffy & Hommes (2013). �ey test the components of a macroeconomic

rational-expectations equilibrium in a cobweb economy. Bao et al. find that while forecasts quickly

converge to the equilibrium prediction, chosen quantities converge much more slowly. Both the

fact that early choices are o�en not best-responses to forecasts and the fact that choices converge

to being best-responses over time are consistent with our story.

We test the implications of our model on belief-action consistency in a laboratory experiment.

Our participants play a series of discoordination-games. Instead of matching them within-session,

they play against one choice out of a distribution of choices from the same game, but from earlier

sessions. Before they play the game and report a belief, participants receive information on the rel-

evant distribution of choices from the earlier sessions. To manipulate belief-uncertainty, we give

participants samples of varying size from the distribution they play against. Participants have to

combine this information with their prior beliefs to arrive at a posterior belief distribution. �e

additional information can have two effects: if the information supports the participant’s prior

judgement of what the distribution of choices will be, more information will increase the partici-

pant’s faith in her belief. If, on the other hand, the information goes against the participant’s prior

judgement, more information may actually disconcert the participant more. �is is indeed what we

see: if the provided information is congruent with the prior belief—and hence belief uncertainty

decreases—the observed best-response rate is higher on average and increases in the number of ob-

servations we provide. When the information is not in line with prior beliefs, uncertainty increases

and belief-action consistency decreases.

Our results are robust to controlling for the costs of making an error which determine the proba-

bility of decision errors in some classic stochastic-choice models. �e results are in line with our

model predictions: making participants more certain about the relevant underlying process (the

object of their belief) leads to less stochasticity of actions and belief reports and, hence, to higher

consistency. Moreover, participants on average earn higher payoffs when uncertainty is low, even

when we control for the empirical accuracy of their beliefs. �is paper thus showcases the impor-

tance of an additional—but so far, neglected—source of stochastic choice and its consequences for

4E.g., Costa-Gomes & Weizsäcker (2008) find best-response rates as low as 51% in their 3x3 games, while Rey-Biel
(2009) reports 66-69% for similar games. Using the mean squared deviations from the average belief within each game
and player role as a proxy for participants’ uncertainty (an average of 30% in Costa-Gomes &Weizsäcker vs. an average
of about 10% in Rey-Biel’s study), such a difference is exactly what we would expect.
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observed behavior in experiments.

Related Literature

Many of the ideas behind our motivation for this study can be found already in the literature

on choice under uncertainty.5 �e main question in this literature is how people will make their

decisions when they face uncertainty and there is no clear way of assigning probabilities to the

possible states of the world. �is literature departs from Savage’s (1954) idea that when agents

face ambiguity, they will simply form subjective beliefs and act on those subjective beliefs as if the

beliefs were proper probabilities. �ere is a whole array of how the corresponding non-Bayesian

subjective probabilities are modelled, and how they are used by the agents.6 �e approach that is

probably closest to ours is the multiple-priors approach axiomatized in Gilboa & Schmeidler (1989).

In multiple-priors models, agents generally choose among the alternatives using a maximin-utility

criterion across all probabilities they consider possible.

�e literature on choice under uncertainty nicely explains ambiguity aversion as exemplified by the

Ellsberg paradox. It also explains, for example, the fact that most people will neither buy a stock nor

sell it short for a whole price range, rather than being indifferent between either of these options

and not doing anything only at one specific single price.7 So, generally speaking, this literature

focuses on explaining choices. Our aim complements this literature, as we focus on explaining

the variance within people’s choices, and on the likelihood of observing inconsistent choices and

errors. For this purpose, it is sufficient to slightly adapt the Bayesian model. �is does not mean

that we are convinced that people in reality can always come up with a probability distribution nor

handle compound lo�eries or update such a distribution in a Bayesian way. We use our modified

Bayesian model merely as a tractable as-if description.

�ere is also a huge and important literature on stochastic choice. �is literature started from

the a�empt to explain effects like the Allais paradoxes. In principle, our model is mute on these

effects because in any of the Allais paradoxes, the probabilities are given, and therefore, obvious to

the decision-maker. However, we think that our model still provides a possible intuition for these

cases, namely, if we consider some of the options to be too complex for the agent to assess them

directly (e.g., because the agent is not good at handling probabilities). In this case, the agent may

have to form a subjective belief about how good each option is. �is subjective belief may then be

5Even our introductory example in Section 1 is similar to the examples given in this literature, cf., e.g., Gilboa,
Postlewaite, and Schmeidler (2008).

6For a recent review, cf. Etner, Jeleva, and Tallon (2012), who also discuss important economic applications of the
models.

7�e first solution to the buying-a-stock problem is due to Dow & Werlang (1992), using Schmeidler’s (1989)
Choquet expected utility.
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more uncertain, the more complex the option is. �is can in principle give rise to the commonly

observed effects in Allais-type tasks analogously to the way Fechner-type errors do. We discuss

the specific modelling differences to the common stochastic-choice models in Section 2.1.

Last but not least, our paper is related to the vast literature on learning. However, the only type of

learning that has been documented in the literature and that could interfere with our conclusions

is feedback-less learning (Weber, 2003). According to this idea, experiment participants learn how

to play a game even without feedback. We therefore should see increasing best-response rates

over time. We address this potential confound by (individually) randomizing the order in which

participants receive the different sample sizes. On top, we control for the period in our analysis,

and hence, implicitly also for any form of feedback-less learning on how to play a best-response.8

2 A model of belief uncertainty and stochastic choice

In this section, we present the simple example of a two-player two-action discoordination game

to make our point. Of course, our model applies also to more general se�ings. First, we present

our model of belief uncertainty and contrast it with other stochastic choice models from the liter-

ature. �en, we relate it to observed best-response rates and present consequences of information

updating for error rates at the end.

Our model is a model of individual choice. �e model is not a game-theoretic model even though

in our main example, the object of agents’ beliefs is the behavior of the other player. While it

would be conceivable in principle to extend the model to an equilibrium model akin to a quantal-

response equilibrium, this is not the focus of our study. For our main example, it is even essential

that agents do not hold equilibrium beliefs. Non-equilibrium beliefs are essential because with

equilibrium beliefs there cannot be any errors in a pure discoordination game.9 It also would be

8�ere are (at least) three additional broad categories of learning models. Directional learning (Selten and Stöcker,
1986) does not apply because it is tailored to situations were the decision variable is on at least an ordinal scale.
Experience-weighted a�raction learning (Camerer &Ho, 1999) and belief-based learning (such as fictitious play, Brown,
1951, or Cournot play) can be interpreted in a way that makes them applicable to our se�ing. In that case, the two
models would make the prediction that participants could be learning something from the information we provide.
However, the predictions in this case are hardly distinguishable from the predictions of (noisy) standard theory. Under
belief-based learning, participants could be trying to learn the mixed strategy of their opponent from the information,
assuming a homogeneous population. In that case, they simply should be best-responding to the information we
provide. Even if agents were to learn more broadly how others behave ‘in this type of situation’, they still should
be playing a best-response to their beliefs. Under experience-weighted a�raction learning, participants could update
their initial choice propensities using the information we provide, again assuming a homogeneous population. �e
resulting behavior should be very similar to best-responses with Fechner-type errors.

9�e assumption of non-equilibrium beliefs seems warranted given the experimental evidence, e.g., for four-action
discoordination games. In the data from Bauer & Wolff (2017) we use also for our present experiment, choice distribu-
tions are significantly different from uniformity at a 5%-level in 15 out of 24 se�ings (χ2-test). 15 out of 24 se�ings are
clearly more than the expected 1.2 se�ings under equilibrium behavior. See Table C1 for the data.
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possible to incorporate our model into a cognitive-hierarchy model, but our point here merely is to

highlight the importance of uncertainty in people’s beliefs that goes beyond the effect of the cost

of making an error. In this sense, we abstract from the question of where people’s initial beliefs

and the initial belief uncertainty come from.

2.1 Model

An agent plays a simultaneous two-player discoordination game with two options, X and Y . She

is randomly matched with another player out of a population of N players. If she chooses a dif-

ferent action than the other player, both receive a payoff of π = 1, and nothing, otherwise. As-

sume players have any commonly used utility function, potentially displaying non-neutral risk-

and loss-a�itudes or being driven by social preferences. In all of these cases, the best-response in

the discoordination game depends only on the probability φ̂ the player assigns to the other player

choosing X:

BR(φ̂) =





X, if φ̂ < 0.5

(X, p; Y, 1− p) | p ∈ [0, 1] if φ̂ = 0.5

Y, otherwise.

(1)

�e true probability φ∗ of X-choices in the population is an unknown realization of the random

variableΦ ∈ [0, 1]. Mean and variance ofΦ are unknown as well. Hence, the player has to rely on a

belief about φ. In this paper, we assume that the belief is a non-degenerate probability distribution

over all possible values of φ. For example, the player might assign a probability of 40% to φ =

0.7 and distribute the remaining 60% of the probability mass over all other possible values of φ.

Hence, the belief is a probability distribution φ ∼ (µq, σq) with continuous density function q(φ)

where
∫ 1

0
q(φ)dφ = 1 and q(φ) > 0, ∀φ. Considering this belief distribution, the player faces a

compound lo�ery: with density q(φ′) the other player chooses X with probability φ′. However,

in standard theory this subtlety does not play a role, as the best-response depends only on the

expected probability the agent assigns to the other player choosing X, denoted by:

Eq[φ] =

∫ 1

0

φ · q(φ)dφ = µq (2)

In standard theory, the player will then choose BR(µq). In the two-option case we outline here,

the critical belief in (1) happens to be φcrit = 0.5. �is need not be the case in games with different

payoffs or more than two options. Also note that, as outlined above, we ignore the (trivial) case of
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Errors

In our model, two characteristics of the belief distribution determine the error rate. First, as the

mean µq approaches 0.5, the error rate εk increases ceteris paribus. �e closer the belief is to indif-

ference, the more errors are made, due to the shi� of probability mass across the critical threshold

and hence depending on the variance of q(φ). In our model, it is for example possible that a belief

with an expected-utility difference (∆EU , where ∆EU = |µq − 0.5|) close to zero produces li�le

or no errors if the variance of q(φ) approaches zero. Our model therefore provides an intuition for

when people will violate the monotonicity principle and choose stochastically dominated options.

Violations of monotonicity are one of the greatest challenges for stochastic-choice models: people

o�en violate monotonicity when dominance is not obvious (because their belief over which option

is be�er is uncertain). On the other hand, people respect monotonicity when dominance is obvious

(and therefore, they know the best option exactly).

Second, for the error rate εk to increase, it is sufficient that ceteris paribus the variance of q(φ)

increases. Consider again Figure 2. �e shaded areas are the values of εk for two belief distributions

with the same mean (µ1
q = µ2

q) and hence ∆EU1 = ∆EU2, but different variances (σ1
q 6= σ2

q ). �e

more variance q(φ) has around its mean, themore likely the agent commits an error. When drawing

from the high-variance belief, it is more likely that BR(φr) 6= BR(µq) compared to a draw from

the low-variance belief.

Relating our model to other stochastic-choice models

�e widely used models of stochastic choice do not use belief uncertainty as a direct source of

stochasticity. Tremble-error models (Harless & Camerer, 1994) assume a constant error when ex-

ecuting a decision. Our idea of stochastic choice is in a way more related to random-preference

models (Becker, DeGroot & Marschak, 1963; Loomes & Sugden, 1995). However, instead of a prob-

ability distribution over parameters of the utility function, we assume a distribution over beliefs.

Also, in our specific example of the discoordination game, random-preference-models do not pre-

dict errors, because optimal behavior is invariant to changes of the utility-function in this game.

As expected-utility differences (∆EU ) approach zero, the error rate increases ceteris paribus in our

model. �is is also predicted bymodels inwhich errors depend directly on∆EU , like Fechner-error

(Becker, DeGroot & Marschak, 1963; Fechner 1860/1966; Hey & Orme, 1994), �antal-Response-

Equilibrium (McKelvey& Palfrey, 1995) or Dri�-Diffusionmodels (Ratcliff, 1978). However, in these

models, errors happen for different reasons. Applying such a model to our se�ing, the probability

of commi�ing an error depends directly on the distance of the belief mean to indifference because
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of external random shocks which disturb the original utility. In our model, the error rate is en-

dogenously determined by the belief distribution and depends on both ∆EU and the probability

dispersion around the mean.

Our model thus endogenizes the error rate and predicts that higher belief uncertainty leads to more

errors. �is separates our model from other stochastic choice models and to the best of our knowl-

edge, there is no other model that relates additional characteristics of q(φ)—like the variance—to

the probability of an error. Also, we do not rule out other sources of error: a�er treating the draw

of φr as the “true” belief, any of the other models of error may apply. Put differently, our model

can be applied on top of the other models.

Stochastic beliefs

�e notion of stochastic choice has consequences also for belief reports. In the usual experiment,

choosing an action and reporting a belief are two separate decisions with different incentives. �e

reported beliefs are usually assumed to approximate µq and used to explain behavior. �ey are

interpreted as the true cause of an action. We relax this interpretation by assuming that not only

the actions but also the belief reports are stochastic. Instead of calculating and reporting µq as a

belief, the player also reports one draw φr as a belief. We assume that players use two different and

independent draws from q(φ) for the two tasks.10 Denote by φr
A the draw used for the action and

by φr
B the draw for the belief report. Below, we will discuss the consequences of the combination of

stochastic choice and stochastic belief reports for consistency. Note, however, that for our general

predictions it would be sufficient to assume that either the action-relevant belief or the belief for the

report are drawn randomly (while maintaining the standard assumptions of a best-response to µq,

or a truthful report of µq, respectively). We nonetheless assume both belief draws to be stochastic.

On the one hand, a stochastic φr
A makes our theory applicable also to individual-choice se�ings

and makes it easily comparable to existing models of stochastic choice. On the other hand, non-

stochastic belief reports seem implausible once we assume stochastic choices due to stochasticity

in beliefs.

So far, we have introduced the key idea that when making decisions and when reporting beliefs,

agents have to draw realizations from their inner belief distribution. We have characterized the

error rate and we have contrasted this rate to what would be predicted by other existing mod-

els of stochastic choice. We now turn to the implications of our model for observed behavior in

experiments.

10If a single draw were to determine both action and belief, we would predict a 100% best-response rate which
definitely is rejected by the evidence in the literature as well as in our experiment.
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2.2 Belief-action consistency

We assume both choices and belief reports to be stochastic. Hence, the true belief distribution q(φ)

and therefore also the true best-response rate and the true error rate are usually unobservable in

experiments.

For the experimenter to observe consistent behavior, that is, an action that is a best-response to the

reported belief, the two draws from the belief distribution have to ‘fit together’. A best-response

is observed only if BR(φr
A) = BR(φr

B). In our example above, this is the case whenever both

φr
A, φ

r
B > 0.5 or both φr

A, φ
r
B < 0.5. �e expected observed best-response rate B̂R is directly

connected to the error rate εk defined earlier and can be characterized by:

B̂R = Prob
[
BR(φr

A) = BR(φr
B)
]
= ε2k + (1− εk)

2 (3)

A best response is observed if an error occurs in either none or both of the draws φr
A, φ

r
B . To obtain

further results, we need to put some structure on the belief distribution q(φ). We assume q(φ) to be

a Beta-distribution which is a very flexible distribution that is able to approximate many different

distributions over beliefs in our se�ing.11

proposition 1: If q(φ;α, β) with µq 6= 0.5 is the Beta-distribution with hyperparame-

ters α, β > 1, the expected observed best-response rate B̂R decreases in the error rate

εk in a symmetric game.

proof: ∂B̂R
∂εk

= 4εk − 2. Hence, B̂R decreases in εk if εk < 0.5. �e error rate εk is

always smaller than 0.5, if the medianmq of the belief distribution q(φ;α, β) is on the

same side of the critical value as the mean µq (that is, if the median favors the same

best response as the mean BR[mq] = BR[µq]) because then, more than 50% of the

probability mass are contained in (1− εk). For the symmetric games we consider here,

it is hence sufficient to show that either both or neither the mean and median of q(φ)

are larger than the critical value of φcrit = 0.5.

By the mode-median-mean inequality (Groeneveld & Meeden, 1977), µq ≤ mq if 1 <

β < α. However, if β < α, also µq = α
α+β

> 0.5. Hence, if 1 < β < α, then

0.5 < µq ≤ mq (and analogously, mq ≤ µq < 0.5 if 1 < α < β). �

11�e Beta-distribution is a prominent example of a probability density function with support (0,1) and hence
suitable to model a distribution over probabilities. With this distributional assumption, it will be convenient to apply
Bayesian-updating, as the Beta-distribution is a conjugate prior for the Bernoulli and Binomial distributions. Hence,
updating a prior belief (Beta-distributed) by a number of X-choices in a sample (n i.i.d. Bernoulli variables) will again
yield a Beta-distributed posterior. See section 2.3.

12



Note that proposition 1 also holds if either the action or the belief are assumed to be non-stochastic.

In these cases, the expected observed best response rate is simply B̂R
′

= (1 − εk) and obviously

∂B̂R
′

∂εk
< 0.

Having specified how the observed belief-action consistency in experiments will depend on be-

lief uncertainty, we next look at a possible determinant of belief uncertainty. A natural source of

variation in the belief distribution—and hence also in belief uncertainty—is the integration of new

information into the belief. To pave the ground for the hypotheses for our experiment, we will

explore the influence of information integration on the error rate in the following section.

2.3 Bayesian updating

From now on, let q(φ;α, β) denote the participant’s prior belief distribution. �e mean of the Beta-

distribution and hence the prior mean is µq = α
α+β

. �e hyperparameter α = nPrior
X + 1 can be

interpreted as the number of prior observations of X-choices in a sample of nPrior = nPrior
X +nPrior

Y

choices and β = nPrior
Y + 1 as the number of prior observations of Y-choices.

Suppose the player observes a new sample of n = nX + nY decisions from the population of N

other players, where nX denotes the number of X-choices in the sample. �e likelihood function of

φ, given the observed sample is s(φ|n) = φnX · (1−φ)nY . �e sample mean is defined as the share

of X-choices in the sample µs =
nX

nX+nY
. �e player updates her prior belief about φ according to

Bayes’ rule to obtain the posterior p(·) with mean µp:

p(φ|n, α, β) =
s(φ|n) · q(φ;α, β)

t(n, α, β)
(4)

where t(n, α, β) =
∫ 1

0
s(φ|n)q(φ;α, β)dφ. Because of conjugacy, the posterior is Beta-distributed

as well. Hence now φ ∼ Beta(α + nX , β + nY ).

Posterior mean and variance

�e posterior mean can be wri�en as:

µp =
α + nX

(α + nX) + (β + nY )
=

α + β

α + β + n︸ ︷︷ ︸
1−w

·
α

α + β︸ ︷︷ ︸
µq

+
n

α + β + n︸ ︷︷ ︸
w

·
nX

n︸︷︷︸
µs

(5)

�e posterior mean is hence a weighted combination of the sample- and the prior-mean. �e

weights are determined by the relative number of observations in the respective distribution where

w denotes the relative weight of the sample. Further note that limn→∞ µp = µs.
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�e posterior’s variance can be expressed as σp =
µp(1−µp)

α+β+n+1
. It has two important properties. First,

as
∂σp

∂n
< 0 the variance decreases ceteris paribus in n, the number of observations in the sample.

Second, the variance is inverse U-shaped with a maximum at indifference µp = 0.5. Hence, the

variance decreases ceteris paribus in the distance of the belief mean to indifference |µp − 0.5|.

�e error rate of the posterior

As described above, the sample- and prior means as well as their relative weight determine the

location and shape of the posterior belief distribution. In this section we derive predictions for the

posterior’s error rate εk based on characteristics of the prior and the observed sample. In the fol-

lowing, we continue to assume BR(µq) = Y for simplicity, but all predictions hold symmetrically

for priors with BR(µq) = X . �e most important characteristic is the location of µs relative to µq

and to the critical threshold from equation (1), in our case, to 0.5. �ere are three cases:

I) Congruent sample: �e sample mean is the same or greater than the prior mean:

0.5 < µq ≤ µs.

i) If 0.5 < µq < µs then εk decreases as the posterior mean is shi�ed to the right

and hence, probability mass is shi�ed away from 0.5.

ii) If 0.5 < µq = µs then εk decreases as the posterior variance decreases.

In both of these subcases, an increase of the relative weight of the sample w leads to

an additional decrease of posterior variance and, hence, a larger decrease of εk.

II) Sample in between: �e sample mean is less extreme than the prior but favors

the same action: 0.5 < µs < µq. In this case, the prediction depends on the relative

weight.

i) For a sufficiently small relative weight, εk will increase due to the shi� of the

mean towards 0.5 which is stronger than the minor decrease of variance.

ii) For a sufficiently large relative weight of the sample, εk will decrease as the de-

crease of variance of the posterior will outweigh the effect of the shi� towards

0.5.

III) Incongruent sample: If µs < 0.5 < µq, that means, if the sample mean is com-

pletely different from the prior mean and the two suggest different best-responses, it

is a priori unclear which action the posterior will favor. �e prediction depends again

on the relative weight:
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i) For a sufficiently small relative weight of the sample, εk increases as long as the

posterior mean µp is such that µs < 0.5 ≤ µp < µq. �is means, the posterior

mean approaches 0.5 from the right and probability mass is shi�ed to the le�.

ii) If the relative weight is large enough, the prior is ‘overturned’ by the information.

�en, µs outweighsµq andµp < 0.5. From then on, εk decreases in relativeweight

(from εmax
k = 0.5 at µp = limǫ→0 0.5− ǫ).

Note that in Cases I and II, the posterior will always favor the same action as the sample because

both µq, µs > 0.5. �is also holds for the overturned beliefs in case III ii). However, if the belief is

not overturned, the posterior will always favor a different action than the sample in case III i).

In this section, we have shown how the integration of new information affects belief uncertainty

and the error rate. In Section 4, we will use the outlined cases to formulate specific hypotheses for

our experiment, which we describe next.

3 Experiment

We test the predictions of our model on the relationship of belief uncertainty and belief-action

consistency in an experiment. We manipulate belief-uncertainty exogenously by giving varying

amounts of information about the decisions of the relevant target population of other players.

Experimental tasks

�e experiment uses a two player, four-option, one-shot discoordination-game. Participants play

a series of 24 games without any feedback in between and are randomly rematched before every

game. �e four options of each game are labeled boxes. If a participant chooses another box

than her current matching partner, both receive 7e and nothing otherwise. �e labels of the four

options vary in every game and we use a large variety of le�ers, numbers or symbols as labels.

For example, we start with labels “1,2,3,4” in game 1 and “1,x,3,4” in game 2. Hence, only the non-

strategic features of the game vary across periods. �e complete list of all labels is depicted in

Figure C1 in the appendix. �e order of the games is the same for all participants.

Along with every choice in the game, we elicit probabilistic beliefs a�er the action for every period.

Participants have to report a set of four probabilites, one for each box. We incentivise the belief

reports via a Binarized-Scoring Rule (Hossain & Okui 2013) where subjects could earn another 7e.
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�e Binarized-Scoring Rule accounts for deviations from risk neutrality and expected utility max-

imization. For the belief question, we use the opponent frame: “What is the [respective] probability

with which the participant of the preceding experiment you were randomly matched to chose the indi-

vidual boxes of the current set-up?” 12 At the end of the experiment, we randomly select two periods

for payment. In one period, the outcome of the game is paid and in the other period, the belief task

is paid.

Treatment

Instead of being matched within a session, we matched participants to decisions of earlier ses-

sions. We use data of 360 participants of another study (Bauer & Wolff, 2017) that used the same

series of discoordination-games on the same labels. In each period and for every participant of the

current study, one decision was sampled from the respective choice distribution (shown in Table

C1) of the old experiment. �is decision was the payoff-relevant action of “the other player” in the

corresponding game. Before playing the game and reporting a belief, participants entered an infor-

mation stage in which they received varying numbers of observations from the choice distribution

they were playing against. �ewithin-subject treatment was n, the number of observations that we

sampled and displayed to the participants. �e amount of information ranged from 0 to 360 with

four periods of zero information.13 �e order of the different nwas randomized for n < 360 across

participants and we informed them that the decision of “the other player” was not contained in the

displayed information. In the last period, n = 360 for all participants and thus, the information

contained the relevant decision (which participants knew).

Manipulation check

A�er all decisions, we asked participants to indicate their subjective certainty about their belief in

three different periods. We showed them the information and their belief report of the periods with

n = {9, 120, 354}. For every of these periods we asked “How certain are you that your assessment

is a good representation of the behavior of your matching partner?” �e certainty was indicated

with a slider that ranged from 0 (“absolutely uncertain”) to 100 (“absolutely certain”) and was not

incentivized.

12In Bauer & Wolff (2017), we explore the effects of different frames. �e opponent frame we use here results in
higher belief-action-consistency rates than, for example, a population frame (asking for all other participants’ choices).
�e population frame tends to favour belief-colouring by social projection.

13�e full set of information levels n was {0, 9, 12, 15, 18, 36, 64, 92, 120, 148, 176, 204, 232, 260, 288, 316, 345,
348, 351, 354, 360}.
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Linking the four-option game to the theory

In the experiment, we opt for a four-option game instead of the two-option game used in ourmodel.

We do this for experimental reasons, acknowledging that there are drawbacks when linking our

experiment to the model. We prefer the four-option-experiment, because in a two-option game, a

randomly clicking person would produce a best-response rate of 50%. Hence observed consistency

will be generally high in this case, which makes it likely we would face ceiling effects. In the

four-option game, the random best-response rate is reduced to 25%. Also, with four options, we

can create much more variance in the label pa�erns than with two options. �us, we can keep up

participants’ interest for more rounds. Further, we also think that participants are more involved

in the experiment if they have more influence on their outcome. However, in a two-option game

with symmetric payoffs, the influence of a participant’s decision on her payoff would be literally

minimized.

As indicated above, our model does not trivially extend to the multi-option case. �ere are more

special cases for the prediction of the error rate a�er updating. In Appendix A we spotlight in an

example that the two most important intuitions of our model above carry over to a multi-option

case. First, a higher variance of the belief distribution will increase the error rate and larger sample-

sizes will ceteris paribus decrease the variance. Second, the predictions for Case I i) and Case III

i) will hold also in the multi-option case. A more extreme sample will decrease the error rate

and a sample with a completely different best-response (and small weight) will increase the error

rate. In the simulation described in Appendix B, we implement our model in the four-option-game

environment we use in our experiment. �e results show that our predictions also hold there (see

also Section 4).

Procedures

�e experiment was programmed using z-tree (Fischbacher, 2007). We use data of 55 participants

recruited with ORSEE (Greiner, 2015). All sessions took place in the LakeLab at the University of

Konstanz and lasted for approximately 75 minutes, including a short questionnaire at the end of

the session which paid 5e. �e last item of the questionnaire was a reliability-of-answers measure

which gives participants the opportunity to indicate how reliable their data is in their opinion. �e

average payment was 13.27e.
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4 Predictions

In this section we specify the hypotheses for our experiment. We base the hypotheses on our model

predictions in section 2.3 and on proposition 1 which states that the observed best-response rate

decreases in the error rate εk. Given we do not observe directly all variables that are relevant in our

theory, we have to proxy for some of them. In the following paragraphs, we discuss the relevant

proxies before we turn to the experimental hypotheses.

Approximating congruence of prior and sample

Our theory predictions and hypotheses mostly rely on the relationship of the sample mean µs to

i) the prior mean µq and ii) the prior’s relative weight w. Both of these variables are not observed

in our experiment. First, we cannot observe the particular strength of participants’ prior beliefs

(α + β), so we do not know w. Second, as the core idea of our theory, participants are not able

to access and report µq or even q(φ). For our data analysis we have to rely on proxies for the

unobservables.

We proxy the relative weight w = n
α+β+n

by our treatment variable n, the number of provided

observations. �is proxy works well for weak priors and loses accuracy in the strength of the

prior (α + β). It hence could be that a participant by chance gets a high number of observations

whenever her prior is particularly strong, and a low number of observations when she has only

a weak prior. However, we randomize the treatment n across participants and games. �erefore,

there is no reason to expect that such cases will systematically occur or dominate our data.

Second, we proxy situations of a ‘congruent sample’ and a ‘sample in between’ by the relationship

of the sample to the reported belief φr
B , instead of the relationship of the sample to the prior mean

µq. We compare what the best-response to both entities separately would be. Hence, we compare

on which of the four options the participant places the smallest probability mass in her reported

belief to where the minimum number of observations is in the sample.

If the reported belief, φr
B , has a different minimum than the information and hence also a different

best-response, it is highly likely that the information favored a different response than the prior

mean, µq (Case III), and was not enough to ‘overturn’ the (reduced) prior. In particular, if par-

ticipants were able to obtain their true posterior µp by some form of sensible updating (including

Bayesian updating) and report µp, it would have to be that the sample contradicted the participant’s

prior.

In contrast to that, if the reported belief has the sameminimumas the information (that is,BR[φr
B] =

BR[µs]) it is unlikely that the information differed completely from the reduced prior (Case I & II),
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unless the information ‘overturned’ the prior. We will further discuss the influence of ‘overturned

beliefs’ on consistency below when we present our hypotheses.

As a summary, we proxy the relative weight of the information by its number of observations n.

�e relationship between prior- and sample-mean is approximated by a dummy which compares

the reported belief to the information. Belief-min = Info-min indicates Cases I, II and III ii). Both

proxies should work well on average.

Hypotheses

In situations where the sample-information favors the same action as the mean prior belief (Cases

I: Congruent sample and II: Sample in between), the expected observed best-response rate always

increases in the relative weight. Using our proxies, we can formulate

Hypothesis 1: In cases where participants report beliefs such that Belief-min = Info-

min, the observed best-response rate increases in the sample size n.

Our situation proxy cannot perfectly separate all cases in which the sample information does not

favor the same action as the mean prior belief [Case III]. In particular, Case III ii) consists of cases

in which the prior belief is ‘overturned’ by the information. �ese cases will also fall into the

category Belief-min = Info-min. However, beliefs that have just been ‘overturned’ will have a high

variance, which would speak against our Hypothesis 1. We nevertheless expect Hypothesis 1 to

hold because we expect these cases to be rare enough not to dominate the data. In any case, not

separating these cases from Cases I and II goes against our Hypothesis, so that we should have

even more confidence in the effect in case we find it.

Case III i) is indicated by Belief-min 6= Info-min. Whenever participants report a belief with Belief-

min 6= Info-min, it is highly likely that the belief was not overturned by the sample. �is indicates

a strong prior. However, because the provided sample differs from the prior, the sample shi�s the

posterior towards the critical threshold. Hence, in these cases belief uncertainty is generally higher,

compared to cases with Belief-min = Info-min.

Hypothesis 2a: In cases where participants report beliefs such that Belief-min 6= Info-

min, the observed best-response rate is lower on average, compared

to situations with Belief-min = Info-min.

2b: If Belief-min 6= Info-min, the observed best-response rate decreases in

the sample size n.
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Best-response to belief Average marginal effects

Observations = 898, Clusters = 54 Model 1 Model 2 Model 3

nnormalized -0.126** -0.128**
(0.051) (0.050)

Belief-min = Info-min 0.108* 0.108*
(0.057) (0.055)

nnormalized × (Belief-min = Info-min) 0.214** 0.219**
(0.103) (0.103)

‘Strength’ of the reported belief 0.561* 0.576*
(0.309) (0.299)

Period 0.009*** 0.008*** 0.008***
(0.002) (0.002) (0.002)

Male 0.173** 0.167* 0.132*
(0.076) (0.076) (0.073)

Mean Squared Error (Full Sample) 0.1961 0.1869 0.1826

Mean Squared Error (Out of Sample for even Periods) 0.1960 0.1853 0.1814

Table 1: Averagemarginal effects of logit regressions on observed best-responses. Standard errors in paren-

theses are clustered on the participant level (54 clusters). �e interaction is computed using the inteff

so�ware by Norton, Wang & Ai (2004). See also Ai & Norton (2003). �e marginal effect of the interaction

is positive for all participants. Asterisks: *** p < 0.01, ** p < 0.05, * p < 0.1. Additional controls in all

models: age, math-grade, economics-student and a self reported reliability-of-answers measure.

probability mass. If the strength is very low, the participant is almost indifferent between choosing

the optimal or the second-best option and, according to a model with Fechner-type errors, has a

high probability of making such an error. If Fechner-type errors apply, consistency will be low in

these situations independent of belief uncertainty. �e results of Model 1 show that the utility cost

of making an error indeed have a large impact on belief-action consistency. High costs of an error

strongly increase the probability of an observed best response.

Model 2 replicates our earlier results with respect to belief-uncertainty which hence also hold when

accounting for decision-specific incentives. �e probability of a best-response decreases in belief

uncertainty. Including both sources of error (the strength of belief and belief uncertainty) in the

regression shows that the effect of belief-uncertainty is robust also when controlling for the utility

cost of an error (Model 3). Finally, feedback-free learning over time leads to more best-responses

in later periods in all three models.

To compare all three stochastic-choice specifications, we use out-of-sample predictions. We per-

form the regressions in Table 1 for all odd periods and predict the probability of a best response for
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each decision in all even periods.15 �e bo�om panel of Table 1 shows that the out-of-sample mean

squared prediction error decreases from Model 1 to 3. To test the predictive power of the models,

we compute the average squared prediction error of each model for every subject individually. �e

distributions of mean prediction errors differ between Model 1 and 2 (Wilcoxon signed-rank test,

p = 0.043). �is means model 2 outperforms model 1. Further, Model 3 outperforms both Models

1 and 2 (Model 1 vs 3: p = 0.009, Model 2 vs 3: p = 0.083).

Our results provide evidence that classical decision errors alone cannot explain stochastic choice

and belief-action consistency sufficiently in our data. Models 2 and 3, where we add our measures

for belief uncertainty clearly outperform the ‘standard’ decision-error Model 1 both in terms of

fit to the data and predictive power. Hence, belief uncertainty plays an important role on top of

classical decision errors.

Response times as an alternative measure of utility differences

Above, we use the strength of the reported belief as a measure of the utility cost of an error—

hence as a measure for the strength of participants preferences. An alternative measure for the

strength of preferences are response times. �ere is ample evidence in the literature that response

times are closely linked to preferences: longer response times indicate that a person is close(r) to

indifference between two options.16 In this study, the response time also may serve as an implicit

measure of the strength of preference. �is measure might be even less noisy than the strength

of the reported belief because it does not rely on the participant’s belief report, which, a�er all, is

stochastic according to our model.

We hence rerun our regressions, accounting also for response times. �e regressions are reported

in Table C3 in the Appendix. We include the normal logarithm of the response time (needed to

select and confirm one of the boxes) as an additional explanatory variable in the set of logit regres-

sions reported in Table 1. As expected, the extended models show that quicker response times are

associated with higher belief-action consistency. �is effect is in line with our above interpreta-

tion, that stronger preferences lead participants to commi�ing fewer errors, which in turn leads to

higher belief-action consistency. �e effect of response times on consistency is robust to adding

the belief strength, our original measure of the utility cost of making an error. Most importantly,

though, the effect of belief uncertainty is robust to adding response times as an alternative measure

15�e out-of-sample results are robust to predicting the choices of the second half of periods (13-24) by the the first
half of periods (1-12). However, models 1 and 2 do not differ significantly in that case (Wilcoxon signed-rank test,
p = 0.312)

16Mosteller & Nogee, 1951; Moffa�, 2005; Chabris et al., 2009; Alós-Ferrer et al., 2012; Dickhaut et al., 2013; Kono-
valov & Krajbich, 2017. Alós-Ferrer et al., 2016 even include this fact as a building block in their economic model to
explain preference reversals.
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Expected probability of discoordinating Model 1 Model 2

nnormalized 0.001 0.002
(0.005) (0.005)

Belief-min = Info-min 0.012*** 0.011***
(0.003) (0.003)

nnormalized × (Belief-min = Info-min) 0.023*** 0.021***
(0.007) (0.006)

Relative distance of belief to true distribution -0.026***
(0.009)

Period 0.0004** 0.0004**
(0.0002) (0.0002)

Male 0.002 0.003
(0.004) (0.003)

Constant 0.749*** 0.757***
(0.028) (0.029)

Table 2: Linear regressions of the expected probability to discoordinate, given the

true choice distribution. Standard errors in parentheses are clustered on the partici-

pant level (54 clusters). Asterisks:*** p < 0.01 ** p < 0.05. Additional controls: age,

math-grade, economics-student and a self reported reliability-of-answers measure. �e

expected probability to discoordinate ranges from 65.8% to 83.1% in the data.

for utility differences. Higher belief uncertainty still leads to less belief-action consistencywhenwe

include both measures for sources of stochastic choice—belief strength and response times—either

separately or jointly. �e effect of belief uncertainty becomes stronger, if at all.

�e last period with full information

In the last period, where we provided all 360 observations out of the choice distribution, there

should be no more (belief) uncertainty about the relevant choice distribution. However, we still do

not observe 100% best-responses. Also, 11 participants reported a belief with Belief-min 6= Info-min.

We a�ribute these observationsmainly to other sources of stochastic choice than belief uncertainty.

For example, the cost of an error are still relevant when there is no belief uncertainty. Further, it

is also conceivable that some participants did not understand that there was no more uncertainty

in this period. �e data with n = 360 are just in line with the rest of the results, as if there was

some uncertainty le�. All our main results hold (especially all regression results), when excluding

the last period with n = 360 from the analysis.
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Expected earnings in the discoordination game

So far, we have analyzed the effect of belief uncertainty on best-response rates. However, the ques-

tion remains whether belief uncertainty will cost participants money. If belief uncertainty causes

errors in the decisions, participants should earn less if uncertainty is high. We test this hypothesis

by looking at the effect of belief uncertainty on expected success rates in the discoordination game.

On average, our participants discoordinated in 77.7% of the cases. To assess the performance of our

participants in the game, we compute the expected probability to discoordinate given the partici-

pant’s choice and the true (i.e., complete) choice distribution. In Table 2, we regress the expected

probability of discoordinating on our measures for belief uncertainty and the controls.

Model 1 shows that if the participants’ prior was congruent with the information, the probability

of discoordinating increases in the number of observations in the sample, as expected. �e effect is

practically nil if prior and information were not congruent. But what should we expect given our

model? A priori, the answer to this question is unclear.

When prior and information are incongruent, there will be three partially counterveiling effects

on our observed variables. First, note that providing information which contradicts prior beliefs

will do two things: it will increase choice stochasticity—which is good if you would otherwise

always choose the wrong option—and it will make the posterior more adequate than the prior.

Both effects would mean performance should increase in the amount of provided information n

also for Belief-min 6= Info-min observations. However, there also will be a selection effect. For low

n, there will be both people with high and people with low relative weight on the prior in the

Belief-min 6= Info-min group. Among this group, the people with high relative weight on the prior

will perform worse, because they nearly always choose the wrong option. In contrast, people with

low relative weight will sometimes choose the right option because of the variance in their belief

distribution. If we now increase the amount of information, people with low relative weight will

tend to drop out of the Belief-min 6= Info-min observations. In other words, for increasing n, the

be�er-performing people will drop out of the average, which is the selection effect counterveiling

the two performance-increasing effects of increasing n.17 What the data seems to show is that the

counterveiling effects seem to just cancel out on average.

In Model 2, we want to estimate how much of the positive effect of more information is due to the

decrease in belief uncertainty, and howmuch is due to more accurate beliefs (i.e., to µp being closer

to the true φ∗). To do so, we additionally control for how close the participants belief report was

17�e people dropping out of the Belief-min 6= Info-min average will enter the Belief-min = Info-min average, of
course. �ere, they will bring down the average because they will be the least likely to choose the right option in this
group. In other words, our estimation will underestimate the beneficial effect of more information for both groups.
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n Mean normalized certainty Std. Dev. Rank-sum test

9 -5.45 16.62
p = 0.020

120 0.10 12.35
p = 0.016

354 5.35 16.90

Table 3: Results of the unincentivized certainty-question in three dif-

ferent rounds. �e certainty report is normalized by individual means.

to the true choice distribution. If participants receive more observations from the true distribu-

tion, their belief is shi�ed more and more towards the true distribution and hence becomes more

accurate, the larger n is. A more accurate belief however, should increase the probability to disco-

ordinate independently of belief uncertainty. To control for participants’ more accurate beliefs, we

include the distance of their belief report to the true distribution as a control variable.

Model 2 shows that both the improved accuracy in beliefs and the reduction of belief uncertainty

play an important role in improving expected payoffs. �e effect sizes are roughly the same for

changing from the maximum possible difference between belief and true distribution to reporting

the true distribution and for changing from providing virtually no information to all potential

information, at least for the Belief-min= Info-min case. Note again, though, that the coefficients for

both variables containing nnormalized will be biased downwards due to the selection effect described

above.

In summary, we find that lower belief uncertainty is associated with a higher probability to dis-

coordinate provided that prior beliefs are not inaccurate. In turn, high belief uncertainty causes

participants to forgo actual money in the experiment in that case. At the same time, belief uncer-

tainty quite naturally will be beneficial when beliefs are inaccurate, as it will move participants

away from invariably choosing the wrong thing.

Unincentivized certainty

Table 3 shows the result of the unincentivized certainty questions at the end of the experiment.

For each subject, the three certainty reports for their beliefs in rounds with n ∈ {9, 120, 354}

are normalized by the participant’s mean certainty level, to level out individual heterogeneity. On

average, the reported certainty increases in the amount of information and the distributions differ

significantly across n according to rank-sum tests. �ese results further support our interpretation

of uncertain beliefs and that on average our manipulation of certainty was meaningful.
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6 Conclusion and Discussion

In many cases, people play according to equilibrium only a�er sufficient experience.18 In this pa-

per, we point out that experience with a situation may ma�er not only for whether people play

equilibrium strategies—it ma�ers also for whether they act optimally given their (unobserved) be-

lief distribution. If people find themselves in a completely new situation, it is very likely that they

‘don’t really know what to believe’ about the uncertain features of the situation. When people face

this type of environment, we propose that their choices will exhibit a large variance that depends

not only on their average belief and the expected costs of making mistakes like in other models,

but on the degree of belief uncertainty people face.

We model belief uncertainty by the variance in players’ probability distributions over possible

beliefs. �is belief uncertainty creates stochastic choice because players have no direct access

to their belief distribution, so that players have to sample a belief each time they need to act.

�ereby, our model and experimental evidence point to a source of stochastic choice that so far

has been neglected in the literature. Taking belief uncertainty into account will be important when

predicting people’s choices in situations where they face high degrees of strategic or environmental

uncertainty. However, it remains open to further research how belief uncertainty plays out in

more sophisticated decision problems: for example, when we buy a house, we hesitate in order to

think about it multiple times. In our model, this makes sense if we revisit the decision time and

again to sample more probabilities. An interesting question that ensues here is, of course, how

we integrate those sampled probabilities. Does multiple sampling decrease belief uncertainty?

To test this conjecture, the experimenter would have to make participants think about a relevant

probability several times and only then require a choice and a belief report.

As a final exercise in this paper, we show that belief uncertainty relates to expected earnings. Also

in this regard, our model provides a new perspective. When beliefs are at least somewhat accurate,

increasing belief uncertaintywill cost peoplemoney. While this is not predicted by standard theory,

it is hardly surprising. What is less obvious is that—always controlling for the reduced belief—belief

uncertainty can be beneficial, namely when beliefs are inaccurate. �is may be a reason for why

people might tend to entertain a relatively high degree of uncertainty about their beliefs: when it

is not clear whether my belief is accurate or not, a high degree of uncertainty acts as a hedging

device—at least I will do the right thing some of the time.

Belief uncertainty is also highly relevant for us as researchers when eliciting beliefs and interpret-

ing experiment participants’ belief-action consistency. Consistency will be predictably low when

18E.g., Fudenberg & Levine (2016), and references cited therein.
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participants face a new, unknown, and complex situation; it will be higher, themore participants get

to know the situation. In particular, belief-action consistency will be higher the more participants

learn what others will do. �is again links to the literature on whether experiment participants

learn to play the Nash equilibrium. Research has shown that the degree of complexity is an im-

portant factor (e.g., Grimm & Mengel, 2012). Our study provides an explanation for why more

complex environments are o�en associated with less equilibrium play. Not only may the beliefs be

far from being equilibrium beliefs, but the associated belief uncertainty will o�en make the other

equilibrium concept’s key ingredient fail: the ingredient of best-response behavior.
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element than Ev[φ]. �e error rate is hence characterized by the probability mass on all possible

beliefs that have a different minimum thanEv[φ]. Such beliefs are depicted by the non-shaded area

in the simplex.

In our two-option model above, the error rate increased in the variance of the belief distribution.

�is also holds for the multi-option case. Suppose the distribution v(φ) is spread out around Ev[φ]

with high variance. �en it is more likely, that the player draws a φr with a different minimum

than Ev[φ]. Now, how is the error rate further influenced, for example by updating?

To see this, denote Ev[φ] = µv as the “prior mean” and suppose the agent observes one of two

possible samples nA, nB . �e maximum-likelihood of a specific sample can be depicted as one

point on the simplex. �e intuition is the same as in the two option case: A�er bayesian updating,

the new posterior mean Ez[φ] = µz will be a weighted sum of the sample and the prior mean. �is

is also indicated by the arrows in Figure A1. �e (posterior) mean of the belief distribution will be

pulled towards the sample points on the simplex. Now consider the sample nA. It is more extreme,

compared to Ev[φ] (Like Case I in Section 2.3). �e posterior mean is pulled towards the edge of

the simplex and more probability mass of the belief distribution is shi�ed to the shaded area. �is

means that the error rate will decrease.

�e opposite happens when the agent observes sample nB (Similar to Case III). It favors a different

best response and the posterior mean is pulled towards the center of the simplex. �is means that

probability mass of the belief distribution is pushed on the non-shaded area and the error rate

increases. All these pa�erns are further moderated by the posteriors variance which, as in the

two-option case, decreases in sample size.

B Simulating the four-option game

To make clear that our predictions for the four-option game do indeed result from our theory,

we run a simulation. First, we randomly choose an absolute weight nq for our prior, with nq ∼

U [1, 400]. nq can be interpreted as the number of observations in a prior sample. We choose an

upper limit of 400 so that there can be priors that outweigh the maximum sample size of 360 used

in our experiment. Our prior should be Dirichlet-(α) distributed (cf. �n. 19). So, we randomly draw

four probabilities π
(q)
i for the αs of the prior distribution. We use a Dirichlet-(1, 1, 1, 1) distritution

for this random draw. �en, we use the randomly-drawn probabilities together with the drawn nq,

to determine the parameters of the prior Dirichlet distribution: α
(q)
i = nqπ

(q)
i + 1.

A�er randomly defining the prior, we create an “observed sample” of choices. We draw the number

of new observations n from a uniform distribution over all levels we use in the experiment but the
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extreme cases, so thatn ∼ U{9, 12, 15, 18, 36, 64, 92, 120, 148, 176, 204, 232, 260, 288, 316, 345, 348,

351, 354}. �en, we randomly determine ‘choice probabilities’ for the random samples. For this

purpose, we draw three values π
(aux)
i , π

(aux)
i ∼ U [0, 1]. We then let sampling probabilities be a ran-

dom perturbation of the following sequence of probabilities: π
(s)
1 = π

(aux)
1 , π

(s)
2 = (1− π

(s)
1 )π

(aux)
2 ,

π
(s)
3 = (1 − π

(s)
1 − π

(s)
2 )π

(aux)
3 , and π

(s)
4 = (1 − π

(s)
1 − π

(s)
2 − π

(s)
3 ). Using the random perturba-

tion of our probabilities π
(s)
i , we draw a sample of n new ‘observations’. We then apply Bayesian

updating to update the prior Dirichlet distribution according to the ‘new observations’, so that

α
(p)
i = α

(q)
i + ni.

So far, we have simulated a prior belief-distribution with absolute weight nq and an observed sam-

ple of n choices. Using Bayes’ rule, we have updated the prior to arrive at a posterior belief distribu-

tion. To assess the predicted observed best-response rate for the resulting posterior, we use 10’000

iterations of the following process: from the posterior, we draw a belief φr
A for the action and a be-

lief φr
B for the reported belief, with φr

A, φ
r
B ∼ Dir(α(p)). If the two beliefs have their minimum on

the same option, they are consistent. For each draw of φr
B , we also record whether it has the same

minimum as the distribution of ‘new observations’ n. �en, we record the average consistency for

all draws of φr
B that have the minimum on the ‘anti-mode’ of n. Further, we compute the average

consistency for all draws of φr
B that do not have the minimum on the ‘anti-mode’ of n (where we

define the anti-mode to be the location that occurs least o�en in the sample). We thus compute

best-response rates separately for when the reported belief indicates the same best-response as the

observed sample and when it has not.

We iterate the above process 5’000 times. �en, we use a linear regression to relate the level of

consistency to the sample size n, a dummy indicating whether the drawn belief φr
B has its minimum

on the anti-mode of the samplen, and the interaction of both terms. We plot the resulting predicted

best-response rates in Figure 3 in Section 4. �is prediction has three characteristics: when the

reported belief and the sample suggest the same choice, (i) the best-response rate is higher than

when they do not; (ii) the predicted best-response rate increases in n; and (iii) when the reported

belief and the sample suggest different choices, the predicted best-response rate decreases in n.
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C Figures and Tables

Game Box 1 Box 2 Box 3 Box 4 χ2 Sig. on 5% Sig. on 1%

1 74 106 110 70 14.578 X X

2 110 68 76 106 14.844 X X

3 84 70 86 120 15.022 X X

4 110 100 70 80 11.111 X -

5 104 84 101 71 7.933 X -

6 76 77 97 110 9.044 X -

7 115 63 84 98 16.156 X X

8 83 90 87 100 1.7556 - -

9 123 74 75 88 17.489 X X

10 104 83 92 81 3.667 - -

11 97 77 81 105 5.822 - -

12 101 82 88 89 2.111 - -

13 86 76 80 118 12.178 X X

14 116 92 72 80 12.267 X X

15 76 104 89 91 4.378 - -

16 91 66 102 101 9.356 X -

17 113 70 90 87 10.422 X -

18 85 95 61 119 19.244 X X

19 100 76 71 113 13.178 X X

20 93 87 75 105 5.200 - -

21 97 84 86 93 1.222 - -

22 92 71 93 104 6.333 - -

23 102 75 101 82 6.156 - -

24 104 67 76 113 16.111 X X

Number of significantly non-uniform distributions: 15 10

Table C1: �e 24 historic choice distributions, used to sample the provided information. Corre-

sponding χ2-tests with H0: choices are uniform across boxes
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Best-response to belief Linear Probability Model

Model 1 Model 2 Model 3

nnormalized -0.158** -0.160**
(0.068) (0.066)

Belief-min = Info-min 0.117* 0.117*
(0.063) (0.061)

nnormalized × (Belief-min = Info-min) 0.212** 0.217**
(0.102) (0.100)

’Strength’ of the reported belief 0.511** 0.534**
(0.223) (0.222)

Period 0.009*** 0.008*** 0.008***
(0.002) (0.002) (0.002)

Male 0.169** 0.157** 0.128*
(0.069) (0.069) (0.066)

Table C2: Linear Probability Model OLS regressions of observed best-responses. Standard errors in

parentheses are clustered on the participant level (54 clusters). Asterisks: *** p<0.01, ** p<0.05, * p<0.1.

Additional controls in all models: age, math-grade, economics-student and a self-reported reliability-of-

answers measure.

Best Response to belief Average Marginal effects a�er Logit

Model 1′ Model 1′′ Model 2′ Model 3′

ln(decision time) -0.123*** -0.114*** -0.099*** -0.090***

(0.033) (0.034) (0.033) (0.034)

nnormalized -0.124** -0.128**

(0.051) (0.050)

Belief-min = Info-min 0.095* 0.094*

(0.054) (0.053)

nnormalized×(Belief-min = Info-min) 0.211** 0.217**

(0.103) (0.102)

’Strength’ of the reported belief 0.490 0.516*

(0.300) (0.299)

Period 0.006*** 0.007*** 0.006*** 0.006***

(0.002) (0.002) (0.002) (0.002)

Male 0.181** 0.155** 0.149** 0.121*

(0.077) (0.075) (0.073) (0.072)

Mean Squared Error 0.1944 0.1914 0.1834 0.1799

Table C3: Marginal effects of Logit regressions accounting for ln(decision time). Number of Observations

= 898. Standard errors in parentheses are clustered on the participant level (54 clusters). Asterisks: ***

p<0.01, ** p<0.05, * p<0.1. Additional controls in all models: age, math-grade, economics-student and a

self-reported reliability-of-answers measure.
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D Experimental Instructions

�e instructions are translated from german. Boxes indicate consecutive screens showed to participants.

Today’s Experiment
Today’s experiment consists of 24 rounds in which you will make two decisions each.

Decision 1 and Decision 2

In the first round, you will see the instructions for both decisions directly before the decision.
In later rounds, you can display the instructions again if you need to.

�e payment of the experiment
In every decision you can earn points. At the end of the experiment, 2 rounds are randomly
drawn and payed. In one of the rounds, we pay the point you earned from decision 1 and in
the other round, you earn the points from decision 2. �e total amount of points you earned
will be converted to EURO with the following exchange rate:

1 Point = 1 Euro

A�er the experiment is completed, there will be a short questionnaire. For completion of the
questionnaire, you additionally receive 5 Euro. You will receive your payment at the end of the
experiment in cash and privacy. No other participant will know how much money you earned.

General Instructions
For todays experiment, another experiment plays a central role. �is experiment has been
conducted earlier, here in the LakeLab. �e earlier experiment is describet in the following.

�e earlier experiment

In the earlier experiment, 360 participants ran through 24 rounds. In every round groups of
two randomly matched persons were formed. �e group members did not know each others
identity and could not communicate throughout the whole experiment.
One round of the experiment worked in the following way: both participants did see the exact
same screen. On the screen, there was an arrangement of four boxes which are marked with
symbols. Both of the group members chose one of the boxes. If both group members chose
different boxes, both received a price. If both members chose the same box, there was no
payoff. All participants learn about which box was chosen by the other participant and which
payoff they received in a certain round only at the end of the experiment.
�e arrangement of symbols on the boxes differed in every round for every group. �e
decision of a participant was hence on an unknown arrangement. Below, you can see an
example of how such an arrangement could have looked like.

Example: �e four boxes are marked from le� to right by Diamond, Heart, Spade, Diamond.

♦ ♥ ♣ ♦

In this example, there are two boxes which are marked with the same symbol. However, the
boxes on the most le� and most right count as are different boxes.
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Instructions for experiment 1
�e number of points you receive in decision 1 depends on your own decision, as well as on
a participant of the earlier experiment who will be randomly matched with you. How this
works, will be explained in the following.

Decision 1

For decision 1 in every round, you see an arrangement of four boxes which are marked with
symbols that was also used in the earlier experiment. �e computer then randomly draws one
of the participants of the earlier experiment who chose one of the boxes.

In decision 1, you have to choose a box as well.

If you choose another box than your randomly matched partner from the earlier
experiment, you receive 7 points. If you choose the same box as your randomly
matched partner, you don’t receive points.

On the next screen, you receive more information about the earlier experiment.

Additional Information
In every round, before you make decision 1, you receive additional information, how a certain
sample of the 360 participants of the earlier experiment decided in the respective arrangement.
In every round, a random sample is drawn from all 360 participants of the earlier experiment.
For every of the four boxes, you get to know how many participants in the sample chose that
box. You can see an example of how this information looks like below:

[Example Screen, see screenshot below]

Please note, that the participant you are matched to in the respective period is not
contained in the sample you see. �is means, that this participant is always drawn
from the remaining participants which are not shown to you.
�e size of the respective sample of participants you receive information about will vary from
round to round. �ismeans, that you have different amounts of information about the decisions
of the participants of the earlier experiment in every round.
Please note, that the participants of the earlier experiment did not have any informa-
tion how other participants decided. Information like you can see it above, was not
displayed to the participants of the earlier experiment.
�e information is displayed on the next screen.
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Instructions for decision 2
In decision 2, your payoff also depends on your own decision and on the decision of your
matching partner from the earlier experiment. We now explain decision 2 in detail.

Decision 2
Decision 2 refers always to the arrangement from decision 1, which was also used in the earlier
experiment. You will hence see the arrangement of boxes from the respective round again. You
also can look at the additional information again. Again, the decision of your matching partner
from the earlier experiment is relevant for you.
Decision 2 is about your assessment, how your matching partner from the earlier experiment
decided. We are interests in your assessment of the following question:

“With what probability did your matching partner chose each of the respective boxes
of the current set-up?”

For every box, you can report your assessment with what probability your matching partner
chose the respective box. You can enter the percentage numbers in a bar diagram. By clicking
into the diagram, you can adjust the height of the bars. You can adjust as many times as you
like, until you confirm.
Since your assessments are percentage numbers, the bars have to add up to 100%. �e sum of
your assessment is displayed on the right. You can adjust this value to 100% by clicking. Or
you enter the relative sizes of your assessments only roughly and then press the “scale” bu�on.
Please note, that because of rounding, the displayed sum ma deviate from 100% in some cases.
On the next page, we explain the payoff of decision 2.
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�e payoff in decision 2
In this decision, you can either earn 0 or 7 points. Your chance of earning 7 points increases with
the precision of your assessment. Your assessment is more precise, the more it is in line with
the decision behavior of your matching partner. For example, if you reported a high assessment
on the actually selected box, your chance increases. If your assessment on the selected box was
low, your chance decreases.
You may now look at a detailed explanation of the computation of your payment, which
rewards the precision of your assessment.

It is important for you to know, that the chance of receiving a high payoff is maximal
in expectation, if you assess the behavior of your matching partner correctly. It is our
intention, that you have an incentive to think carefully about the behavior of your
matching partner. We want, that you are rewarded if you have assessed the behavior
well and made a respective report.

At the end of the experiment, one participant of today’s experiment will roll a number between
1 and 100with dies. If the rolled number is smaller or equal to your chance, you receive 7 points.
If the number is larger than your chance, you receive 0 points.
As soon as you reported and confirmed your assessment about the behavior of your matching
partner, the round ends. Youwill then bematched with another participants and the next round
begins.
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Payment of the assessments
At the end of your assessment, you will receive the 7 points with a certain chance (p) and
with (1 − p), you receive 3 points. You can influence your chance p with your assessment in
the following way:

As described above, you will report an assessment for each box, on how likely your matching
partner is to select that box. One of boxes is the actually selected. At the end, your assessments
are compared to the actual decision of your matching partner. Your deviation is computed in
percent.

Your chance p is initially set to 1 (hence 100%). However, there will be deductions, if your
assessments are wrong. �e deductions in percent are first squared and then divided by two.

For example, if you place 50% on a specific box, but [your matching partner selects another
box,] your deviation is equal to 50%. Hence, we deduct 0.50 ∗ 0.50 ∗ 1

2
= 0.125 ( 12.5%) from p.

[For the box, which is actually selected by your matching partner, it is bad if your assessment
is far away from 100%. Again, your deviation from that is squared, halved and deducted.
For example if you only place 60% probability on the actually selected box, we will deduct
0.40 ∗ 0.40 ∗ 1

2
= 0.08 (8%) from p.]

With this procedure, we compute your deviations and deductions for all boxes.
At the end, all deductions are summed up and the smaller the sum of squared deviations is, the
be�er was your assessment. For those who are interested, we show the mathematical formula
according to which we compute the chance.

p = 1− 1

2

[∑
i(qboxi,estimate − qboxi,true)

2
]

�e value of p of your assessment will be computed and displayed to you at the end of the
experiment. �e higher p is, the be�er your assessment was and the higher your chance to
receive 7 points (instead of 0) in this part. At the end of the experiment, the computer will roll
a random number between 0 and 100 with dies. If this number is smaller or equal to p, you
receive 7 points. If the number is larger than p you receive 0 points.

Summary
In order to have a high chance to receive the large payment, it is your aim to achieve
as few deductions from p as possible. �is works best, if you have an good assessment
of the behavior of your matching partner and report that assessment truthfully.
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