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I. Introduction

The quality of many important economic decisions depends on individual characteristics of the
decision maker and the resources invested in the process of decision-making. If investing more time
improves decision-making, the optimal allocation of time and therefore the optimal quality of the
decision depends on the opportunity costs of time. We introduce a parsimonious model in which a
decision maker (DM) rationally trades-off the costs and the quality of a decision under risk. Our
economic model is based on the seminal works of Becker (1965) and Mincer (1963) on how rational
agents allocate time optimally, recognizing that time has a (shadow) price determined by the opportunity
costs related to alternative uses of it. Therefore, we follow Rabin’s approach (Rabin 2013b, 2013a) to
provide a portable extension of existing models that is able to incorporate a psychologically more
realistic notion of rationality.

The model predicts that a rise in opportunity costs leads to faster choices that are of lower quality. We
test these predictions in a lab experiment in which we exogenously vary the opportunity costs of time
spent on the choice between two monetary lotteries. Other behavioral studies use fixed decision
deadlines to investigate behavior under risk (Kocher, Pahlke, and Trautmann 2013; Nursimulu and
Bossaerts 2013), but we analyze how subjects trade off opportunity costs of time and improved decision
quality. Therefore, we use time-dependent opportunity costs, such that each second spent thinking is
costly (see also Kocher and Sutter, 2006).

Based on the revealed preferences of the decision maker, the quality of a decision is measured by the
number of inconsistent choices in risky decisions. We first jointly estimate risk aversion and decision
error using structural estimations (Fechner 1860; Hey and Orme 1994; Harrison, List, and Towe 2007;
Harrison and Rutstrom 2008; Bruhin, Fehr-Duda, and Epper 2010; Caplin, Dean, and Martin 2011).

We find that risk aversion does not vary significantly when opportunity costs are higher. On the other
hand, the likelihood of a decision error increases with higher opportunity costs, thus validating our
model’s prediction. When confronted with higher opportunity costs, the DM rationally chooses lower
decision quality by investing less time in the decision, which is necessary to equalize the marginal
utilities of time with respect to its different uses.

In our model, we assume that investing more time increases the quality of a decision and we predict
that valuable time will not be spent on choices that do not matter, but instead on an alternative use.
However, there are two findings from the literature that appear to be at odds with our model of rational
decision-making. First, in some studies, subjects’ response times were found to be longer in lottery
decisions when the utility difference between two available lotteries was small (Dickhaut et al. 2013;
Krajbich, Oud, and Fehr 2014). Second, longer decision times positively correlate with a higher
incidence of decision errors (Dickhaut et al. 2013; Alés-Ferrer et al. 2016). We address these issues in
our model and in the analysis by employing instrumental variable regressions, and the drift diffusion

model (Ratcliff 1978; Krajbich, Oud, and Fehr 2014; Oud et al. 2016).
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We find empirical evidence for the presence of the two puzzling results in our data. When using the
estimated expected utility difference as the difficulty of a decision, we find a negative correlation
between decision times and expected utility difference. However, when we insert decision difficulty as
the expected utility difference into our model, we show that the negative correlation is also possible
within our model. Concerning the second puzzle, when simply regressing decision time on making a
correct choice, we find a negative correlation between decision time and correct choices. However, a
causal interpretation is not possible if the difficulty of the decision is not controlled for because decision
difficulty is likely to be positively correlated with decision time and negatively correlated with the
probability of a correct choice. We circumvent these problems with our research design. Our randomized
opportunity cost treatments provide us with the ideal instrument for the time invested in the decision.
Instrumenting the decision time with opportunity costs reveals a strongly negative causal effect of
decision time on errors, which is in line with the “Thinking, Fast and Slow” metaphor (Kahneman
2011).

As a last step, we focus on the drift diffusion model as it generally correctly predicts the puzzles (see
(Fehr and Rangel 2011). We estimate the drift diffusion model parameters and simulate the marginal
effects on decision quality when spending more time deciding. The analysis suggests that spending time
increases decision quality. Further, higher opportunity costs are associated with lower boundaries. These
lower boundaries can be interpreted as needing less evidence to make a choice which, in turn, leads to
choosing the inferior lottery more often.

This paper makes several contributions to the literature. Several studies (Nursimulu and Bossaerts
2013; Dickhaut et al. 2013; Kocher, Pahlke, and Trautmann 2013) use fixed and exogenous time
constraints in their experiments. In contrast, we investigate the endogenous investment of time in the
decision-making process determined by the trade-off between the opportunity costs of time and the
quality of the decision-making. Wilcox (1993) and Krajbich, Oud, and Fehr (2014) vary the monetary
payoff of the decision task by changing either the stake of the decision itself or the magnitude of the
payoff difference between the available options. We directly introduce exogenous variation in the
opportunity costs of time, which is not confounded with and independent of the decision problem itself.
In addition, there is an extensive literature on the correlation between decision time and decision quality
in decision-making under risk (Wilcox 1993; Dickhaut et al. 2013), learning and belief updating
(Achtziger et al. 2012), and strategic decisions (Kocher and Sutter 2006). Our research design allows us
to identify the causal effect of decision time on decision quality. We provide a comparison between our
extension of the expected utility model to the process-oriented drift diffusion model of Ratcliff (1978)
and show that both models, correctly specified, provide similar predictions with respect to the nexus
between decision time, difficulty of the decision, and quality of the decision. We are able to show that
both the negative correlation between decision time and quality and the observation that more time is
spent making a decision between options with rather similar utilities are compatible with a model of

rational behavior that incorporates the opportunity costs of time.



In the next section, we review the relevant literature and look at the two puzzling results. In section
III, we describe our model and how it relates to the puzzles. Section IV explains the experiment. Our
structural estimation results are provided in Section V. We discuss puzzles related to our findings, the
instrumental variable approach and how the drift diffusion model compares with and adds to our model
in Section VI. Section VII discusses potential extensions of our approach and robustness checks. We

conclude in Section VIII.

II. Literature Review

We analyze the investment of time in making quality economic decisions under risk. This relates our
study to behavioral studies on how time pressure induced by fixed decision deadlines alters behavior
under risk (Kocher, Pahlke, and Trautmann 2013; Nursimulu and Bossaerts 2013)?, the economics of
information as introduced by Stigler (1961) and rational inattention (Caplin and Dean 2015; Maté&jka
and McKay 2015)*. Our study complements the work of Caplin, Dean, and Martin (2011) on the effect
of information search on decision-making. Based on the idea of Simon (1955), Caplin, Dean, and Martin
(2011) investigate decisions for which not all information is immediately available to the decision
maker. Many important economic consumer decisions, such as choosing the right pension plan or
savings contract, share this feature. Modern communication technologies can provide access to all
information that is easily available. The evaluation of information can be seen as the binding constraint
in the decision-making process, especially when risk is involved and risky decision-making is what we
are interested in here.

Two results of previous studies seem to be in stark contrast to the predictions of our economic model.
First, subjects have been found to invest more time in lottery decisions when the utility difference
between two available lotteries is small. This implies that a better quality lottery decision increases
expected utility only slightly (Moffatt 2005; Gabaix et al. 2006; Chabris et al. 2009; Dickhaut et al.
2013; Krajbich, Oud, and Fehr 2014) which is contrary to the economic intuition that valuable time
should not be spent on choices that do not matter, but on an alternative. Alés-Ferrer et al. (2016) include
an assumption in their model of preference reversals that divides choices into hard (small utility
difference) and easy ones (large utility difference).

Second, longer decision times were found to correlate with a higher incidence of decision errors
(Dickhaut et al. 2013; Alés-Ferrer et al. 2016). Alés-Ferrer et al. (2016) hypothesize and then confirm
with their data that predicted reversal take longer than comparable non-reversals. These reversals can
also be seen as inconsistent choices. In a related model, Achtziger and Alés-Ferrer (2013) show that the

relation between a controlled process (Bayesian updating) and an automatic process (reinforcement

3 In contrast to the experiments used in the literature on time pressure, in which a DM is forced by an exogenous time limit, our experimental
setting investigates the effect of time pressure as an endogenous outcome of a decision maker’s trade-off between costs and quality of a
decision. In the former, a deadline either yields either no effect or a slightly increased risk aversion.

4 We analyze decisions under risk in which all information is available. The decision maker decides on how much effort to exert to distinguish
the two option (which is related to the second stage mentioned by Maté&jka and McKay (2015)). See also Caplin (2016) for a recent review on
attention.

4


Rational#_CTVL0011c9d936f921a4b55a071631eee8ec44b
Rational#_CTVL0011c9d936f921a4b55a071631eee8ec44b
file:///C:/Users/Hausfeld/OneDrive/Time%20Project/risk%20paper/The%23_CTVL00150a6b2e5f833441aa171d26d9d363080
file:///C:/Users/Hausfeld/OneDrive/Time%20Project/risk%20paper/The%23_CTVL00150a6b2e5f833441aa171d26d9d363080
file:///C:/Users/Hausfeld/OneDrive/Time%20Project/risk%20paper/Human%23_CTVL00173723f56a21a4da588101808c58a1c20
file:///C:/Users/Hausfeld/OneDrive/Time%20Project/risk%20paper/Human%23_CTVL00173723f56a21a4da588101808c58a1c20
Rational#_CTVL0011c9d936f921a4b55a071631eee8ec44b
Rational#_CTVL0011c9d936f921a4b55a071631eee8ec44b
Measuring#_CTVL0015b0a1854df374f80a8a3cc6f6d6f4753
Measuring#_CTVL0015b0a1854df374f80a8a3cc6f6d6f4753

learning) predict response times of errors: if the two processes are aligned, then errors tend to be slower,
while errors tend to be quicker if the processes yield contradicting predictions.

While expected utility (Neumann and Morgenstern 1944) has its roots in axiomatic theory, the drift
diffusion model (DDM) claims to emulate the decision process the human brain. Decision values are
encoded by neurons that transmit all-or-nothing information (Krajbich, Oud, and Fehr 2014): only when
the signals add up to a sufficiently large boundary will a decision be made. Contrary to the process
oriented DDM that portrays the neuropsychological process, the expected utility (EU) model is usually
interpreted as an as-if model (Friedman and Savage 1952), that is, a black box that does not describe
the underlying mechanisms governing the decision process. Ratcliff (1978) introduced the drift-
diffusion model of dynamic evidence accumulation processing to predict both choice behavior and the
distribution of decision time.’ The DDM assumes that the decision maker observes two types of signals
that indicate the value of the two available lotteries, and continuously updates the resulting relative
decision value (RDV). This process continues until a choice specific threshold is reached. Using the
notation of Krajbich, Oud, and Fehr (2014), the drift diffusion model predicts that decision time varies
negatively with the expected utility difference. When the expected utility difference is small, the
decision time is longer than when the expected utility difference is large, because it is more difficult to
discriminate between the two lotteries (see Fehr and Rangel 2011).° As a result, the evidence
accumulation process is slower. The DDM can also account for the second puzzling empirical regularity
— a negative correlation between decision time and the probability of choosing the superior option. In
the DDM, a longer decision time is mainly caused by both a low drift rate and large boundaries
(neglecting a high non-decision time). Drift toward the preferred decision boundary makes a correct
choice more likely. However, the lower the drift rate, the longer the accumulation process, and the more
likely it becomes (conditional on the fact that the RDV has still not reached the boundary of the superior
option) that the stochastic component of the DDM will cause the RDV to cross the boundary of the
inferior option. Changes in the drift rate caused by a variation in the difficulty of a decision therefore
produce a negative correlation between decision time and quality. The drift diffusion model has received
a great deal of attention in the consumer search literature (for example, Reutskaja et al. 2011) and has
been extended to dual stages or dual processes (Hiibner, Steinhauser, and Lehle 2010; Caplin and Martin

2015; Alés-Ferrer 2016).

II1. Economic Model
In this section, we present a model that describes a rational decision maker facing a risky decision.
The decision maker trades off time in making a correct lottery choice against a well-defined opportunity

cost of time. The risky choice is between two lotteries £ = {L, R} where R (L) denotes the lottery with

5 For a recent survey on the drift-diffusion model see Ratcliff and McKoon (2008). For description of the DDM, we rely on Fehr and Rangel
(2011) and Krajbich, Oud, and Fehr (2014) who provide short surveys on the use of the DDM in the economic literature.

¢ Fehr and Rangel (2011) summarize stylized facts related to predictions of the DDM, including the prediction that difficulty, as measured by
the utility difference, is positively related to decision time.
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the higher (lower) expected utility.” The agent decides on the optimal allocation of total time T to spend
on the lottery decision t; and the alternative (other) use t,. u; denotes the expected utility related to the
lottery choice, whereas u, relates to the utility derived from the alternative use of time which is the
opportunity cost of the lottery decision. The opportunity costs are deterministic and increasing in ¢,
(0u,/0t, > 0). Furthermore, opportunity costs may differ which is captured by a. A higher « is
assumed to increase the marginal utility of an additional second not allocated to the lottery choice
(0%u,/dt,da > 0). The expected utility of the lottery decision depends on the two available lotteries
and the probability  of selecting the lottery with the higher expected utility (R). The probability 7 is
increasing in the time invested in the decision (dm/dt; > 0) and may also depend on the individual
characteristics y such as education, skills, and the difficulty of the lottery decision §. The agent

maximizes
e)) max ug(m(ty,v,6),L) +uy(t,, @) s.t to+tyg =T
o td

The first order conditions require equality of the marginal utilities related to both time use opportunities.

dug O u

&) A=
o dtg at,

S—— S

MUy MU,

A higher probability 7 increases E[uy] because it improves the chance of selecting the lottery with
the higher expected utility.® The left-hand side of Equation (2) describes the positive marginal utility of
time spent on the lottery decision. If we further assume d2m/dt3 < 0, we find that MU, is decreasing in
tq.> The right-hand side of Equation (2) describes the marginal utility of time with respect to the
alternative time use.

In our experiment, we use different treatments to vary the opportunity costs « related to the lottery

decision. An increase of these costs is illustrated in Figure 1 by an upward shift of MU, toward MU ;.

’ For the sake of a notational convenience, we assume R > L < E[u(R)] > E[u(L)] throughout the paper.

8 The increase of E[ug] is zero if the two available lotteries yield the same expected utility (E[u(R)] = E[u(L)].

° This assumption is intuitive. The probability 7 has an upper bound of 1, leading to the intuitive assumption that 7 approaches 1 at a decreasing
rate. In our two-lottery set up we can further assume 1(0,v,8) = 0.5, which corresponds to a random choice between the lotteries if no
resources are invested in the lottery decision.
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Figure 1. Optimal Time Invested in Decision Quality

Notes: The figure presents the equilibrium condition in Equation (2) based on the maximization problem (Equation(1)). In the equilibrium, the
optimal decision time is chosen so that the marginal utilities from investing a unit of time in the lottery decision and in the alternative activity
(MU, and MU,) are equalized. An increase in opportunity costs a shifts the MU, upward to MU,, and leads to a lower optimal decision time.

From this simple model, we derive the following prediction: An increase in the opportunity costs
reduces the optimal time invested in the lottery decision and therefore reduces the quality of the decision.
In line with rational behavior, we expect to see more errors in the lottery decisions because investing

more time to improve the lottery decision has to be traded off against the opportunity costs.

A. Is Time Invested in Economic Decisions when the Decision Does Not Matter?

Gabaix et al. (2006), Moffatt (2005), Chabris et al. (2009), Dickhaut et al. (2013), and Krajbich, Oud,
and Fehr (2014) find that more effort—as measured by decision time—is expended when there is only
a small difference in expected utility between the two possible choices. This is contrary to the economic
intuition that valuable time should not be spent on choices that do not matter, but on an alternative. In
our model, we substitute the time constraint into the maximization problem of Equation (1) such that

the agent chooses an optimal time span t}; for selecting a lottery:
3) max U = n(te,y,6) - Eu(R)] + (1 - n(te,,6)) - E[u(L)] +uo(1 - tg, @).
d

Based on the first order condition reported in Equation (4), a smaller utility difference AE[u] =
E[u(R)] — E[u(L)] reduces the costs of a decision error, and requires a lower t 4, since dm/dt, is assumed

to be positive.

“4) S—Z = (E[u(R)] — E[u(L)D - :_ZJ’% Lo
ROl

As mentioned above, however, several studies find exactly the opposite. We allow the difficulty § of a
decision to codetermine the probability m(t; y,8) of making a correct decision. In line with the
reasoning of the DDM and that of (Alés-Ferrer et al. 2016), we assume that the difficulty § is decreasing
in AE[u] (a small value of AE[u] is associated with higher difficulty), and assume d7/d(AE[u]) > 0.
Reformulating the first-order condition from Equation (4) gives

7
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Equation (5) illustrates the trade-off between responding to a greater difficulty and a lesser importance
of the decision. A lesser importance, denoted by a lower AE[u], enters the first factor of the product in
Equation (5) and decreases ceteris paribus the optimal time invested in the decision (t) because  is
assumed to be an increasing and concave (3%m/dt3 < 0) function in t;. However, a lower AE[u] also
increases the difficulty of identifying the superior lottery. Assuming that a lower AE[u] will not only
decrease the probability of choosing the superior lottery at any given decision time (d7/dAE[u] > 0),
but also decreases the marginal utility from spending an additional unit of time on the lottery decision
(02n(ty, v, AE[U])/ (6td6(AE [u])) < 0), the difficulty effect will lead to more time invested in the
lottery choice and thereby counteracts the importance effect. Signing dt;/0AEU is therefore an
empirical question. In contrast to the interpretation of Krajbich, Oud, and Fehr (2014), our results
suggest that a negative correlation between t; and AE[u] cannot be interpreted as evidence against the
expected utility model. We rather interpret the ability of the expected utility model to reveal the two

opposing effects that govern optimal decision time as a strength of the traditional model.

IV. Experimental Design

A. Method

112 subjects were recruited with ORSEE (Greiner 2015) among the students of the University of
Konstanz. The experiment was programmed in z-Tree (Fischbacher 2007) and conducted at Lakelab,
the economics laboratory at the University of Konstanz. The experiment lasted about 75 minutes and
participants earned €14.29 on average (maximum €88.25, minimum €5.15). The experiments took place
between May and June 2015. Table 5 in Appendix A provides summary statistics in regard to the socio-
economic characteristics of all 112 subjects.

The experiment consisted of four parts (Figure 2). First, the participants completed all four questions
of the Berlin Numeracy Test in multiple choice format (Cokely et al. 2012). Second, subjects completed
Holt and Laury’s (2002) incentivized Multiple Price List (MPL).'°

After completing these two tasks, subjects played 180 lotteries with two states and a wide variety of
probabilities.'! We used a random lottery design that has been used in several experiments investigating
decisions under risk (Harrison and Rutstrom 2008). Subjects had to decide between two options, where
the probability of receiving the higher value in one option was equal to the probability of receiving the
lower value in the other option. We mainly used the probability pairs 90-10, 75-25, 60-40, and 53-47.
Two randomly drawn lotteries were paid out. At the end, subjects completed a smaller version of the

Raven’s Matrices.!? Parts 1, 2, and 4 of the experiment were identical across treatments, while Part 3

12 Only the Holt-Laury task and the lottery task were incentivized. The payoffs were determined at the end of the experiment (after the Raven’s
Test) to rule out potential endowment effects in later stages of the experiment.

' Appendix L presents the set of lottery pairs used in the experiment to gather the choice data.

12 See Raven et al. (2005). We used every third item of the second set.
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featured treatment-dependent opportunity costs. The treatment was the same for all subjects within a

session.

Lottery Choices Raven'’s Test

Berlin Numeracy Test

* Measuring risk
preferences

* Measuring
general numeracy
skills

* Measuring
cognitive
depletion

Figure 2. Experiment Setup

Notes: The figure presents the timeline during the experimental sessions. Parts 1, 2, and 4 were similar across treatment conditions. In Part 3,
subjects in all treatments were confronted with the same set of 180 lottery choices, but with different opportunity costs related to the decision
time.

In order to investigate the effect of different opportunity costs, we implemented time dependent costs
in a between-subject design. We conducted four sessions and only the time-dependent costs in Part 3
varied between the sessions. The time costs ranged from O cents (no time costs) in the control group to
10 cents (low), 30 cents (medium), and 100 cents (high) in the three treatment groups. All subjects had
a maximum of 15 seconds to make a lottery choice. Subjects, not in the time cost treatments, were told
that they would receive the outcome from the lottery plus points from a “time account”.

In each of the 180 rounds, there were €3 in the time account and the time account yielded no negative

points. Every second (and millisecond) subjects lost'?

a treatment dependent amount from their time
account (10 cents, 30 cents, 100 cents). There were 28 subjects in each of the three treatments with
opportunity costs: another 28 subjects were assigned to the control treatment. For subjects in the no costs
treatment, the time dependent costs of the lottery decision were equal to zero.

Several studies use strict or lenient deadlines and explore their effect on decision-making. We are
mainly interested in the trade-off between spending more costly time and making a better decision such
that every second spent thinking is costly to the alternative use. Therefore, we decided to use time-

dependent costs instead of a deadline.

V. Estimation and Results

A. Decision Time and Opportunity Costs
The model described in Section III predicts a decrease in time invested in the lottery decision as
opportunity costs increase. Figure 3 presents the average time spent on a lottery decision in each
treatment. The decision time drops by more than 50% from 3.05 seconds in the treatment without
opportunity costs to 1.3 seconds in the treatment with the highest opportunity costs. With the exception
of the comparison between the /0 cents and 30 cents treatment, a t-test with standard errors clustered at
the subject level reveals significant differences (p < 0.01) across the time spent on the lottery decision

across all treatments. '

13 To avoid a loss frame, the instructions stated “For every second faster than X seconds, you gain Y cents on your time account.
14 These results also hold for alternative nonparametric tests described in the notes below Figure 3.
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Figure 3. Time Invested in the Lottery Decision

Notes: This graph plots the average time subjects spent on a lottery decision in the corresponding treatment and standard errors clustered at the
subject level based on 20,160 lottery decisions made by 112 subjects. Significance of pairwise comparison across treatments is calculated using
a t-test clustered at the subject level. Similar significance levels are achieved when using a (blockwise) bootstrapped t-test clustered at the
subject level with 1,000 replications and a clustered Mann-Whitney U test. All differences across the control group and each treatment condition
are significant at the 1 percent level.
*##%* Significant at the 1% level.
** Significant at the 5% level.
* Significant at the 10% level.
B. Risk Preferences and Decision Error

We use a structural approach to test whether higher opportunity costs reduce the time invested in the
quality of the lottery decision and therefore increase the number of choices in favor of the lottery with
lower expected utility. We elicit the risk preferences that determine the expected utility associated with
a lottery. To elicit risk preferences, we assume a CRRA utility function u(x) = x17? /(1 — p)."” Given
the risk preferences, we then determine errors in the lottery choices. Furthermore, we assume that errors
in the lottery decision are more likely, when, ceteris paribus, the difference in the expected utility
(AE[u]) of the two available lotteries is small. A lottery decision in favor of the preferred lottery (R)
depends on AE[u] = E[u(R)] — E[u(L)] and the realization of a random decision error e~N(0,1). This
implementation of a decision error is known as the Fechner error specification (Fechner 1860; Hey and
Orme 1994).!° The standard normal distribution of & ensures that large realizations of the error term are
less likely than small ones. Whenever AE[u] + 7 & < 0, the DM chooses the inferior lottery L and
deviates from the EU prediction.'” The parameter T measures the size of the error. A higher 7 corresponds
to more expected decision errors. Furthermore, the difference in expected utility (E UR)—EU (L)) is
standardized, based on Wilcox (2011), to be bounded within the interval [—1,1].

We jointly estimate our structural parameters p and T to measure the risk preference and errors in the

lottery decision using the data on the lottery Choice between the two available lotteries in lottery pairs

L with the following equation:

(6) Choice* = AE[u(p; £)] + 7 - &, with e~N(0,1),

!5 We relax the CRRA functional form assumption in Appendix G and obtain quantitatively similar results.

16 The Fechner error specification is used as the main specification in several previous studies employing stochastic expected utility models;
see, for instance, (Harrison, List, and Towe 2007; Bruhin, Fehr-Duda, and Epper 2010; Caplin, Dean, and Martin 2011). Starmer (2000)
provides a comprehensive review of different error specifications.

17 Appendix B presents a detailed derivation of our structural estimation procedure.
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where Choice = R if Choice™ = 0 and Choice = L if the latent variable Choice™ is negative. To test our
theoretical predictions we allow p and 7 to depend on the treatment condition. We also investigate
potential heterogeneity with respect to individual characteristics of the subjects as well as estimates at
the individual level.

Table 1 presents the structural estimates at the treatment level.'® The first two models present results
of structural estimations without an explicit error term. We find no treatment effect on the risk aversion
parameter p. The estimates in Columns (3) to (5) correspond to a joint estimation of risk aversion and
the decision error. We find no consistent evidence in favor of a change in risk preferences as a result of
higher opportunity costs induced time pressure. Therefore, the stability of risk preferences is a valid
(implicit) assumption of the economic model described in Section IIL." However, we find a strong
pattern in the magnitude of decision errors. The errors increase most in the /00 cents treatment. In all
three treatments, the increase in decision errors is statistically significant. Based on the estimated
coefficients, we find evidence that the largest magnitude of decision errors occurs in the treatment with
the highest opportunity costs. As the theoretical model predicts, lower investment (decision time) in the
quality of the lottery decision leads to more decision errors. These errors are identified as deviations
from the EU prediction. In Column (5), we allow for heterogeneity in risk preferences and decision
quality with respect to gender (male), age, and numeracy skills (BNT). Male subjects make fewer
decision errors and are less risk averse. We find some evidence that lower numeracy skills, measured

by the Berlin Numeracy test (BNT) are correlated with lower decision quality.

'8 The interpretation of our t-tests in the results table is as follows: testing the treatment coefficients against zero, means we are attempting to
reject the hypothesis that the preference or error parameter is different from the value of the control group (constant). Testing the coefficient
of the constant in the risk preference (p) equation against zero means we are attempting to reject the null hypothesis of risk neutrality or
expected value as choice criteria in the control group. Testing the coefficient of the constant in the decision error (T) equation against zero
constitutes an attempt to to reject the hypothesis of a deterministic utility theory with no decision errors, such that EU(R) > EU(L) =
Pr(Choice = R) = 1, Pr(Choice = L) = 0 holds.

19 Based on stable preferences, we can interpret our model as a normative EU model, explaining how the DM should decide. Deviations from
the normative predictions thus can be interpreted as undesirable decision errors.
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Table 1—Structural estimates

Only Risk Measure Risk & Error Measure
@ ) (3) “ (5)
Parameter: p p p T p T p T
Treatments
100cent Treatment ~ -0.247 -0.139 -0.073 -0.074  0.130%** -0.138  0.118%**
(3.146) (1.956) (0.125) (0.136)  (0.026) (0.149) (0.028)
30cent Treatment -0.589 -0.172 -0.164 -0.154  0.065%*** -0.160  0.040**
(7.109) (5.858) (0.137) (0.125)  (0.018) (0.118) (0.019)
10cent Treatment -0.624 -0.473 -0.181 -0.185 0.090#**  -0.193* 0.051*
(3.348) (3.930) (0.110) (0.121)  (0.034) (0.108) (0.029)
Male -0.657 -0.162*% -0.071%**
(1.065) (0.093) (0.026)
BNT Correct -0.098 -0.040 -0.012%*
(0.194) (0.038) (0.007)
Age (18) 0.027 0.024 -0.004
(0.079) (0.015) (0.004)
Constant 0.233 0.429 0.201%** 0.221%*%*%  (.193*** (.153%**  (.273%* (.234%**

(0.151) (0.336) (0.064)  (0.011) (0.053)  (0.013) (0.111) (0.031)

p-value for joint significance in:

Treatments 0.997 0.999 0.331  0.000 0354 0.000 0241 0.000
Log-Likelihood 13049 -13010 11998 -11931 -11796
Subjects 112 112 112 112 112
Observations 20160 20160 20160 20160 20160

Notes: The dependent variables are the Arrow-Pratt measure of relative risk aversion (p) assuming CRRA utility and the Fechner error (t).
Results in Columns (1) and (2) correspond to estimations without any treatment dependent error specification. Results in Columns (3) — (5)
correspond to joint estimates of p and 1. Block bootstrapped standard errors clustered at the individual level and based on 1,000 replications
are reported in parentheses.?
*#% Significant at the 1% level.
** Significant at the 5% level.
* Significant at the 10% level.

The results in Table 1 provide estimates on the treatment level. To check the robustness of our results,
we estimate the structural model for each subject individually and check whether we can still identify
the pattern of the estimates in Table 1. Figure 4 plots the individual estimates within each treatment and
reveals a clear increase in the decision error as opportunity costs increase, whereas no clear trend is
observable in the estimated risk preferences. Statistical inference on the treatment differences based on
a nonparametric Mann-Whitney U test reveals quite similar p-values on the statistical differences across
treatments (Pap: no vs. 10 = 0-140, Dap: novs. 30 = 0-334, Pap: nowvs. 100 = 0.973). In contrast, we find a

statistically significant increase in the decision error (Par.novs. 10 = 0.003, DPaz:novs. 30 = 0.003,

Paz: no vs. 100 = 0.000).

2 Moffatt (2015) and Cameron and Miller (2015) provide the technical details on the bootstrap procedure.
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Figure 4. Individual Estimates

Notes: N=111. For one individual, the maximum likelihood estimator did not converge. The p estimates of four observations were smaller than
-10 and are therefore omitted. The T estimate of one observation exceeds 1.4 and is omitted from the figure. The statistical tests are performed
on the entire sample, including the omitted outliers. Appendix C presents scatter plots including the outliers and details about the nonparametric
test.

C. Quantitative Size of Decision Errors

We established the existence of a treatment effect on the decision error by reporting a statistically
significant increase in the decision error. The question remains, however, whether this increase is
economically significant or small enough that it can be ignored. The size of our decision error parameter
T is positive but nonlinearly related to the probability of choosing the inferior lottery. The following
example illustrates the error mechanism for a representative lottery choice (AE[u] = 0.11) assuming
that the lottery R has a higher expected utility than lottery L. Based on the structural estimates in Column
(4) of Table 1, Figure 5 illustrates the increase in the decision error as opportunity costs increase from
zero (control group) to 100 cents. The blue curve illustrates the estimated relatively low decision error
(r = 0.153) in the no time pressure control group. The yellow curve corresponds to high decision error
(t = 0.153 + 0.130 = 0.283) estimate for the 100 cent treatment. Given a lottery choice with AE[u] =
0.11, the estimated treatment effect of the decision error of T = 0.130 translates into an 11 percentage
point increase in the probability of choosing the suboptimal lottery, that is, from 24% to 35%.*'

Another way of illustrating the robustness of the decision error pattern is via out-of-sample
predictions.”? We randomly select 120 lotteries and estimate our structural parameters p and 7 for every
subject. Next, we calculate the predicted probability of making a correct choice in the remaining 60
lotteries. We run this procedure 1000 times with new randomly selected lotteries and then calculate the
mean probability of making a correct choice in each treatment. In the control treatment, the probability
of choosing the correct lottery in the remaining 60 lotteries is 71.27%, 66.58% in 10 cents treatment,

67% in 30 cents treatment, and 62.04% in the 100 cents treatment. These probabilities reflect that

2l A random choice would generate an error probability of 50%. Therefore, all improvements in the lottery decision are bounded within the
range between 50% and 100%. An increase of 11 percentage points therefore represents a quantitatively large effect. The decision errors in
both treatments increase as AE [u] becomes small. AE[u] = 0.11 represents an average utility difference across lotteries.

22 A comparison between the out-of-sample predictions of CRRA vs. Prospect Theory yields no significant difference. The results are
available on request.
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subjects’ choices were most likely to be predicted correctly in the control treatment and that the choices

of subjects in the /00 cents treatment were the least likely to be predicted correctly.

Lottery R gives higher utility
AE[u] = E[u(R)] > E[u(L)]

~ low error (no time pressure)

high error (high time pressure)

P(error) = P(X <

P(error) = P(X <

-1.0 0.5 1.0

AE[u] = 0.11
Figure 5. Effect of an Increase in the Decision Error

Notes: This figure illustrates the effect of the estimated error () on the probability of choosing the lottery with lower expected utility. In the
example, lottery R is the correct choice. The parameter values in the illustrated example are AE[u] = 0.11, T,, = 0.153, and 74, =
0.283 (0.153 4+ 0.130). The estimated ts are taken from estimation results in Column (4) of Table 1. The low error corresponds to the control
group, whereas the high error estimate is based on the results for the high pressure (100 cents) treatment group.

VI. Empirical Puzzles Related to the Investment of Time in Economic Decisions

In Section II, we mentioned two seemingly problematic findings in the literature. First, subjects spend
more time on choices that do not matter very much, that is, e.g., when the expected utility difference
between options is small. The second finding is that longer decision times are correlated with more
errors. In this section, we show that estimated expected utility difference is negatively correlated with
decision time. Then, we show that—despite the presence of a negative correlation—the causal effect of
more time invested in the lottery decision on the quality of the decision is positive suggesting that time
can be interpreted as a production factor in a capital-labor production framework of decision quality
(Camerer and Hogarth 1999). As a final exercise, we estimate the treatment effect of an increase in
opportunity costs within the DDM framework. The results suggest that the quantitative effects and the
underlying mechanisms of higher opportunity costs are similar in the neuro-founded, and process-
oriented DDM and the expected utility model. The exercise highlights that the as-if expected utility

model does very well at representing the basic underlying choice mechanisms.

A. Is Time Invested in Economic Decisions When the Outcome of Such Decisions Does not Matter?

Based on the revealed preferences of the decision maker, the quality of a decision is measured by the
number of inconsistent choices in risky decisions. Therefore, we use the estimated risk preferences to
infer the expected utility of every option. Similar to Moffatt (2005), Dickhaut et al. (2013), and Krajbich,

Oud, and Fehr (2014), we find a robust negative correlation between the time invested in the decision
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and the estimated expected utility difference (Figure 6).2* We showed in Section III that this negative

correlation is possible within our model.

20
1

+ |ndividual choices — Mon-parametric regression line (lowess)

15

in seconds
10

Decision Time

0 2 4 6 8 1
EU difference

based on individual risk parameter estimates
Figure 6. Estimated Expected Ultility Difference and Decision Time

Notes: The scatter plot presents the decision times of 19980 individual lottery decisions made by from 111 subjects. A non-parametric
regression line (lowess) is overlaid on top of the data.

B. Is Time an Essential Resource in the Decision Production Function?
To reproduce the negative correlation between decision time and quality, we estimate the coefficients

of the following regression model:

@) CorrectChoice = [, + 5, DecisionTime + X + ¢,

where X denotes a vector of additional controls. Column (1) in Table 2 contains the estimate of 3, based
on the linear probability model. The coefficient is negative and highly significant suggesting that an
additional second invested in the lottery decision reduces the probability of choosing the superior lottery
by 1.4 percentage points. However, a causal interpretation is not possible as long as the difficulty of the
decision is not controlled for, because decision difficulty is likely to be positively correlated with
DecisionTime and negatively correlated with the probability of a CorrectChoice. Based on the standard
omitted variable formulae, 3, is downward biased. A straightforward approach to correct for the omitted
variable bias is to control for the difficulty of the decision. In Column (3) of Table 2, we include the
expected utility distance as a proxy variable for the difficulty.?* The effect of the expected utility
difference (normalized to be between 0 and 1) is positive and significant. The correlation between
decision time and the correct choice probability is essentially zero after including the expected utility
difference as a proxy for decision difficulty. The expected utility difference is, of course, not an ideal

measure of difficulty: this proxy uses a specific functional form and the inherent subjective nature of

2 A bivariate linear regression of decision time on AE[u] reveals a highly significant negative slope coefficient of —1.35 (t = 8.19,p —
value < 0.001,n = 19,906). Standard errors were clustered at the subject level.

2* The underlying risk preferences used to calculate the expected utility difference are based on individual estimations for each subject as
presented in Figure 4. For a similar approach see Moffatt (2005).
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the difficulty of a decision is not captured.? Therefore, it is perhaps unwise to claim that after controlling
for the expected utility difference, 8, can be interpreted as causal effect.

We circumvent these problems with our research design. Our randomized opportunity cost treatments
provide us with the ideal instrument for the time invested in the decision. The increase in the opportunity
costs across our treatment conditions has a negative effect on the decision time, but is—conditional on
the decision time—completely unrelated to the lottery choice. We therefore use standard instrumental
variable techniques to identify the causal effect of decision time on decision quality, as measured by the
probability of choosing the superior lottery. The results are presented in Columns (4) to (6) of Table 2.
The measured negative relation between opportunity costs and decision time in the first stage as the
effect of the treatment dummies on decision time results in an F-statistic on the instruments of above
30.%6 Based on the IV estimates, the resulting causal effect of a time investment on decision quality is
positive, statistically significant, and ranges from an improvement of 2.3 to 3.7 percentage points in the

probability of a correct choice for an additional second invested in the lottery decision.

Table 2— Decision Quality and Time invested in the Decision

Dep. Variable: Correct Lottery Choice (binary)
LPM (OLS) 2SLS
1 (2) 3) ) 5) (6)
Decision Time -0.014%**%  0.012%* -0.001 0.023%%*  (,023%**  (.037%**
(0.005) (0.005) (0.005) (0.008) (0.008) (0.008)
EV difference (abs) 0.049%#:#* 0.051%#%*
(0.003) (0.003)
EU difference (abs) 0.593#:%* 0.646%**
(0.039) (0.037)
Constant 0.773%x% (0 J15%**%  (,657*%* 0.699%#**  (),644%** () 574%%**
(0.013) (0.013) (0.013) (0.019) (0.020) (0.020)
Instrument for Decision Time - - - Treatment Dummies
First Stage F-Stat - - - 30.71 30.71 31.37
Subjects 111 111 111 111 111 111
Observations 19460 19460 19460 19460 19460 19460

Notes: OLS estimates (Columns (1) — (3)) and IV 2SLS (Columns (4) — (6)) are reported. The dependent variable is a binary variable equal to
1 if the lottery with higher expected utility is chosen by the subject and O otherwise. The underlying risk preferences are based on individual
estimates of the CRRA coefficient (presented in Figure 4). Heteroskedasticity-robust standard errors are reported in parentheses.
*#% Significant at the 1% level.
*# Significant at the 5% level.
* Significant at the 10% level.

C. The Drift Diffusion Model
The drift diffusion model is capable of incorporating both of the puzzles discussed in Section II. The
DDM assumes that the decision maker observes two types of signals that indicate the value of the two
available lotteries, and continuously updates the resulting relative decision value (RDV). This process
continues until a choice specific threshold is reached. Figure 7 is a graphical representation of the DDM.

The bold line shows how the RDV develops across time. The dashed line represents the drift rate (u).

5 See, for instance, Chabris et al. (2009) and Moffatt (2005) for alternative functional forms of the decision difficulty proxy variable. In general,
the construction of any difficulty measure seems to include some arbitrary and non-testable modeling choices.
% The quantitative dimension of the first-stage results can be observed in Figure 3 and it is explained in Section V.A.
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The horizontal long-dashed lines represent the threshold values (B) that trigger the choice of the
respective lottery. NDT denotes the non-decision part of time, usually interpreted as the time needed to

encode the information stimulus and to move to response execution (Ratcliff and McKoon 2008).7

Boundary: choose high EU lottery (R)

Boundary: choose inferior lottery (L)
Figure 7. The Drift Diffusion Model

Notes: The example presented in the figure illustrates two evidence accumulation processes in which the decision maker decides in favor of
the superior lottery R (upper boundary). The two processes differ w.r.t. the drift or on how quickly the evidence accumulation process drifts
toward the correct lottery decision.

The evolution of the RDV is a Brownian motion with a constant drift rate (u). The Brownian motion
represents the stochastic part of the decision, whereas the drift rate toward the preferred option is
governed by the decision maker’s ability to discriminate between the lotteries and the quality of the
signals (possibly related to lottery difficulty). If the thresholds are relatively small and/or the drift rate
is low, the stochastic element of the process can dominate choice behavior and give rise to errors. In
Figure 7, this would mean that the RDV path hits the lower boundary.

Following Krajbich, Oud, and Fehr (2014), the difficulty of a decision and therefore the drift rate is

decreasing in the utility difference between the two available lotteries. The RDV evolves according to:

®) RDV, = RDV,_; + v X AE[u] + ¢.
The drift rate is determined by the product v X AE[u]. The stochastic element of the choice process is
represented by e~N(0,02).

Subsequently, we will show that the drift diffusion model essentially predicts a positive causal effect
of decision time on decision quality, despite the fact that many studies using the DDM find a negative
correlation. As described above, a more difficult decision results in a lower drift rate. In turn, lower drift
rate leads to longer decision times, as well as more frequently erroneous decisions. In addition, closer
boundaries are also affected by the speed-accuracy trade-off (Ratcliff and McKoon 2008).?* Closer
boundaries decrease the decision time and, consequently, the opportunity costs of the decision at the
expense of more decision errors. Figure 8 illustrates the effect of closer boundaries. In the right panel
(b), closer boundaries decrease the expected time and can lead to an unfavorable choice. However, it
also becomes more likely that the stochastic component of the accumulation process will shift the RDV

toward crossing the lower boundary and trigger an inferior lottery choice (Figure 8 (b)).

2" In our experiment, the non-decision time (NDT) could be interpreted as the time subjects needed to use the computer mouse to indicate their
lottery choice as well as the time needed to visually recognize the information provided on the computer screen.
2 The speed-accuracy trade-off is the term used in the psychological literature to describe the trade-off between faster and more accurate
decisions.
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Boundary: choose high EU lottery (R)

Boundary: choose inferior lottery (L)

Boundary: choose inferior lottery (L)
(a) (b)

Figure 8. Effect of a Decrease in the Boundaries of the Drift Diffusion Model

Notes: Panels (a) and (b) illustrate the change in the trade-off between costs of the decision, measured by the time invested in the decision, and
the quality of the decision, denoted as probability to choose the high EU lottery. Closer boundaries in panel (b) result in a shortening of the
time until a decision is triggered, but increase the likelihood of arriving at the lower boundary and choosing the inferior lottery. In line with the
comparative static results of the expected utility model, the change of the boundaries in the DDM can be interpreted as a result of an agent’s
optimal solution of the trade-off between the opportunity costs of time and the quality of the decision.

Empirical models that lack exogenous variation in the opportunity costs of time may identify a
negative correlation between decision time and quality because of variation in difficulty across
decisions. These models are therefore unable to establish causality. In the DDM, the omitted variable
bias arises if (i) the boundaries are not allowed to be chosen endogenously or (ii) if exogenous variation
in the decision time that is independent of the difficulty of the decision problem is not modeled. To
estimate the causal effect of time with the DDM, we first estimate the DDM parameters at the treatment
level, using the fast-DM software (Voss and Voss 2007; Voss, Voss, and Lerche 2015). Table 3 reports

the results.

Table 3—Estimates of the Drift Diffusion Model

Decision Criteria: Expected Utility

no cost 10cent  30cent 100 cent

Decision Boundaries (B) 2.73 1.70 1.60 1.34
p-value (Hy: no cost = treatment) - [0.000] [0.000] [0.000]
Drift Rate (i) 0.35 0.42 0.48 0.40
p-value (Hy: no cost = treatment) - [0.058] [0.011] [0.227]
Non-Decisional Time (NDT) 1.25 1.07 1.09 0.87
p-value (Hy: no cost = treatment) - [0.044] [0.056] [0.000]

Notes: Parameter estimates of the drift diffusion model based on the estimation results in Model 5 of Table 1 (N=112). P-values based on
pairwise t-test on the difference between subjects in the control group (no cost) and subjects in the corresponding treatment are reported in
brackets. We set ¢ = 1 in the stochastic component of the DDM (s~N (0, 62)) to identify the parameters of the DDM (see e.g. Ratcliff, (1978),
Krajbich, Oud, and Fehr,(2014)). Since the position of the two lotteries was randomized and both lotteries were presented simultaneously, we
fix the starting point of the RDV at the middle between the two lotteries (no initial bias toward a specific lottery). In addition to the fitted
parameters B, u, and NDT, we also estimate the parameters related to the variability of the drift rate x4 and the starting point of the RDV (results
available on request). Rather similar results are obtained when using risk preferences from individual estimations (see Appendix H, Table 12).

In line with the economic intuition derived from the expected utility model, we find a statistically
significant decline in the boundaries as the opportunity costs of time increase. We also find some (mixed)
evidence for an increase in the drift rate. A higher drift could indicate that subjects put more effort into
the task by increasing their signal-to-noise ratio, which leads to a higher quality, whereas lower
boundaries increase the likelihood of choosing the inferior lottery. To quantify the overall effect on

decision quality of an opportunity cost induced change in decision time, we estimate the partial effect
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of a change in the drift rate, the boundaries, and both simultaneously on decision quality, while keeping

all other parameters of the DDM constant at their sample means.

Table 4—Predictions of the Drift Diffusion Model

Pred. Prob. of Correct Choice (%) Pred. Decision Time (£;)

nocost 10cent 30cent 100cent nocost 10cent 30cent 100 cent

Prediction of the DDM due to change in
Boundaries (AB) 75.1% 66.6% 65.5% 63.2% 2.73 1.76 1.68 1.50

Drift (Au) 653% 682% 70.4% 67.3% 1.88 1.87 1.86 1.87
Both (AB & Ap) 71.8% 66.9% 68.0% 62.7% 2.78 1.76 1.67 1.50

Notes: Predictions of the DDM for the probability of a correct choice (7) and the decision time (;) are presented. The predictions are based
on 500,001 simulations with all remaining parameters set at their sample mean values. The correct choice is determined from the utility
difference based on the estimation results in Model 5 in Table 1. Rather similar results are obtained when using risk preferences from individual
estimations (see Appendix H, Table 13).

The simulation results (Table 4) based on the DDM suggest that a change in boundaries predicts a
decline of the correct choice probability from 75.1 % in the no cost control group to 63.2 % in the /00
cents treatment. This effect is partially offset by the simultaneous change in the drift rate. Overall, based
on the simulations of the DDM, an increase in opportunity costs from zero to 100 cents per second
decreases the time invested in the lottery decision from 2.78 to 1.5 seconds, which causes a decline in
the probability of correct choice by more than 9 percentage points. Just like the empirical and theoretical
prediction of expected utility theory, DDM points toward a positive causal effect of time investment on
the quality of the decision.

In the final analysis, the expected utility model performs just as well as the neuro-founded and
decision process oriented DDM. The results from the DDM add additional explanatory power to our
argument that important mechanisms related to the trade-off between the opportunity costs of time and
the quality of decisions can be explained by a rational utility model as simple as the one we suggest in
this study. More specifically, we found that higher opportunity costs induce lower boundaries. Lower

boundaries lead to quicker and more erroneous decisions and therefore support our model.

VII. Further Research and Limitations of the Study

We successfully test several comparative static properties of the economic model introduced in
Section III and demonstrate that decision errors cannot be simply interpreted as irrational behavior.
However, our theoretical framework does not provide an exact point estimate of the optimal allocation
of time. This would require further structural assumptions on the decision-making process captured by
7 in our model. The specific functional form of 7 determines the rate of improvement in the lottery
decision and is therefore instrumental in determining the exact optimal time to invest in the lottery
choice.

There are several versions of the drift diffusion model that employ dual stages or dual processes
(Hiibner et al., 2010; Alos-Ferrer, 2016; Caplin and Martin, 2016). These models offer the possibility of
either (1) two stages in which the second applies only when the first stage does not hit a boundary or (2)

that the decision maker chooses between whether to make a considered, but effort-costly, choice or a
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very fast and non-considered decision. In such models, it could be the case that 7 is dependent on which
system is used, and whether there are conflicts between the predictions stemming from the two systems
(see also (Achtziger and Alés-Ferrer 2013).

Another open question concerns the influence of the decision maker’s prior beliefs on the range of
outcomes. We present an extension of our model in Appendix I to capture the effect of such prior beliefs.
In our model, the entire uncertainty related to the lottery decision is captured in the probability 7,
whereas the utility difference AE[u], which can be interpreted as a measure of the stake of the lottery
decision, is predetermined and known to the decision maker. We relax this assumption in Appendix I
and assume that AE [u] is not deterministic but an a priori unknown random variable, whose properties
can be learned by interpreting signals at a very early stage of the decision-making process. As we
demonstrated in Section III. A, even without an early stage, our basic model is able to produce predictions
similar to those of the process-oriented DDM.*

A straightforward implication of such an initial learning stage is that the DM will invest more
resources in the decision-making process if the early gathered information changes his or her beliefs
about what is at stake in the decision. Indeed, we find that higher payoffs, lead to fewer decision errors.*
The extension of the model provides additional insights into the decision-making process at the cost of
increased model complexity and reduced ability to easily apply the model in other areas of economics
in which the process of decision-making is of minor interest. We believe that our basic model can

describe the most important economic mechanisms of decision-making.

A. Further Results and Alternative Specifications

In Appendix F, we discuss the influence of different measures of cognitive ability and education on
erroneous choice. The economic model of rationality described in Section III explicitly allows for a
correlation between individual characteristics y and decision quality, defined as the probability 7 to
choose the superior lottery, where m is (negatively) related to the Fechner error 7 in the econometric
specification of decision errors. We find some evidence for a positive relation between measures of
cognitive skills and decision quality. Contrary to Dohmen et al. (2010), but in line with Sutter et al.
(2013) and Andersson et al. (2016), we find no evidence for a link between cognitive abilities and risk
preferences.

In Appendix D, we check the robustness of our structural estimation and compare the risk preferences
obtained from our structural estimations to the estimates based on the Holt-Laury task (Holt and Laury
2002). The estimates from the Holt-Laury tasks are correlated with the structural estimates when the
decision error is included. The Holt-Laury estimates might also serve as a control for individual

heterogeneity in risk preferences within and across treatments.

¥ Psychological models of decision making such as the drift diffusion model (see, e.g., Ratcliff and McKoon (2008) incorporate an initial stage
of the decision making process by estimating a non-decision time in which the DM scans the available information before embarking on the
decision process.

3 Results are provided in Table 14 in Appendix L
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The model described in Section III assumes additive separable utility with respect to utility derived
from the lottery decision and the alternative opportunity. The rationale of additive utility comes from
the potential underlying trade-off between investing resources in a decision and deriving utility from
spending these resources on other utility-generating activities.’! Our estimates, however, are robust
against relaxing these assumptions. In Table 8 in Appendix E, we provide evidence that the error patterns
and the stability of the risk preferences described in our main results remain unchanged if we assume
that the DM integrates the entire payoff from both the time account and the lottery choice into the lottery
decision. The results also remain unchanged if we assume different initial endowments, suggesting that
our results are not sensitive to different assumptions about narrow bracketing or mental accounting.

Appendix K provides results of our estimates for subsamples of our lottery menu. The results are
quantitatively similar in each subsample, suggesting that potential learning effects do not interact with
our main results. In Appendix J, we fix different values of p across subjects in order to investigate
whether the pattern of the decision errors continues to prevail. Again, we find the same pattern: errors
are lowest in the no cost treatment. We obtain similar results when we relax the assumption of constant
relative risk aversion and use the more flexible expo-power utility function first proposed by Saha

(1993). The corresponding results are presented in Appendix G.

VIII. Conclusion

We introduce a simple model in which a rational decision maker trades off the quality and the
opportunity costs of a decision in a rational manner.

In contrast to related models (Chabris et al. 2009; Dickhaut et al. 2013), our model is parsimonious
and simple enough to be integrated in applied economic work. It is in line with basic economic reasoning
that investing more resources in the production of sound economic decisions improves decision quality.
The model provides a number of testable predictions.

To test the prediction that decision errors can be rationalized by high opportunity costs, we test the
main implications of our model using a structural econometric approach. We find that decision errors
vary positively with the opportunity costs of decision-making. This finding is in line with the prediction
that decision errors are more likely when higher opportunity costs induce less time investment in
decision quality. Despite a negative correlation between decision time and quality, we find a strong
positive causal impact of an increase in time invested in the lottery decision on the quality of the
decision, which supports the applicability of our economic model. We find no evidence that risk
preferences vary with decision time. This allows a normative interpretation of the model based on the
stable preference assumption (Stigler and Becker 1977).

The notion of irrational behavior has often led to paternalistic policies or, more recently, nudges in an

attempt to improve individual decisions. This has been criticized as they assume that some authority

31 One could, for instance, think of a situation in which a decision maker has to decide between alternative insurance contracts and the extra
time spent time in studying and understanding the consequences of each insurance contract has to be traded-off against spending this time on
leisure or work.
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knows what is best for the individual. Our approach suggests that despite the presence of decision errors,
agents are indeed able to behave rationally and that public policy-makers, even without full information
about preferences, can engage in a great many freedom-preserving measures that have the potential to
improve decision quality, that is, by reducing decision complexity and information costs, or increasing
the decision-making ability of agents.

In the final analysis, our results suggest that many so-called behavioral anomalies manifested as errors
in complex decisions are simply the consequence of a rational trade-off between high opportunity costs
of time and less than optimal levels of and individual decision-making skills. Decision errors, in this

view, are a result of utility maximization under given time constraints.

IX. Appendix

A. Further Descriptive Statistics

Table 5—Descriptive Statistics

Treatment: 100 cent 30 cent 10 cent control

N mean SD median N mean SD median N mean SD median N mean SD median
BNT (corr. A)) 28 1.54 137 1 28 1.61 1.1 1.5 28 1.39 1.03 1 28 1.32 1.09 1
Time for H-L 28 684 29 63.6 28 694 397 56 28 722 434 633 28 75 33.1 684
Raven (corr. A) 28 871 237 9 28 896 206 9.5 28 8.82 209 95 28 829 232 85
Stress 28 3 1.12 3 28 3.04 1.29 3 28 293 1.18 25 28  3.07 1.05 3
Partic. CoglLab 28 032 048 0 28 0.04 0.19 0 28 0.14 0.36 0 28  0.07 0.26 0
Male 28 0.5 — — 28 039 — — 28 054 — — 28 039 — —
Age 28 215 244 21 28 21.1 201 21 28  21.1 225 21 28 21.7 209 21
German 28 093 — — 28 0.89 — — 28 096 — — 28 093 — —
Working 28 0.07 0.26 0 28 025 044 0 28 0.07 0.26 0 28 0.32 048 0
Monthly Inc. 28 343 160 300 28 306 188 270 28 304 124 300 27 379 184 350
A-level grade 28 205 0.6 2.1 28 2.02 0.61 2 28 2.14 0.54 2 28 2.09 0.52 2
German grade 28 192 0.77 2 28 1.81 0.71 2 28 243 091 2 28 201 0.72 2
Math grade 28 239 1.2 2 28 2.04 0.94 2 28 2.19 091 2 28 242 095 25
Know exp.val 28 393 2.14 3 28 439 1.87 4 28 396 2.08 4 28 4 221 5
Politics 28 2.04 0.96 2 28 225 0.84 2 28 196 0.84 2 28  2.04 0.74 2
Right/left wing 28 3.32 0.77 3 28 325 1.24 3 28 3,57 1.23 4 28 3.5 096 3
Rely on answ. 28 146 0.74 1 28 1.39 0.57 1 28 1.32 0.61 1 28 121 0.5 1
Experim. time 28 2213 298 2279 28 2201 240 2212 28 2034 270 2012 28 1906 227 1923
Viol. 1*0.StD 28 0.11 — — 28 036 — — 28 011 — — 28 036 — —

B. Estimation Strategy for Structural Estimates
We estimate the Arrow-Pratt measure of constant relative risk aversion (p) assuming the utility
function,

X
1

1-p
)] u(x) =7—,
p
where x presents the state-dependent lottery payoff. The individual chooses the lottery with the higher
expected utility. The utility difference between the right (R) and the left (L) lottery is given by,

(10) AE[u] = E[u(R)] — E[u(L)].
The econometric specification assumes a cumulative distribution function of the normal distribution

®(AE[u]) connecting AE[u] to the actual lottery choice.
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Figure 9. Cumulative Distribution Function of the Normal Distribution

Notes: The cumulative distribution function of the normal distribution ®(AE[u]) is used to map the probability of choosing the right lottery
to the difference in the expected utilities of two available lotteries (E[u(R)] — E[u(L)]).

To account for treatment-dependent decision errors, we use the Fechner error specification

(11) AE[u] + 7 - &, with e~N(0,1).
T denotes the structural error parameter and N (0,1) the standard normal CDF. We estimate p and 7 with

the following structural equation

" Choicer = (. TP A AL

(12) olce = (pR,l 'E’l'p}e,z : 1—p) - (pL,l 'E’l'pm E) +7-&+E€,
EU(R)ZEU(L)

1 (R), if Choice® = 0,

0 (L) otherwise.

with Choice = {

Furthermore the difference in expected utility (E UR)—EU (L)) is standardized, based onWilcox
(2011), to be bounded within the interval [—1,1], through dividing by the maximum expected utility
difference (w) that can be generated by the states of two available lotteries. The error term is denoted
by €.

We allow p and 7t to depend on the treatment condition represented here by the change in the
opportunity costs a and a vector of other variables z, which might absorb socio-economic characteristics

and variables related to properties such as the difficulty of the lottery decision.

o xlle_ip(all) x112_2p(all) xi;ﬂ(u'l) x;;ﬂ(ml)
(13) Choice™ = (pg, - 1pan) TPr2 T pan ) T\ P Tpmn TP Tomn | T (a, z) - e+e
Estimates for p(a, z) and t(a, z) in Equation (13) are obtained by using maximum-likelihood
estimation. Let Ay E[u] = AE[u]/w designate the standardized utility difference (Wilcox 2011) and

P(R) the probability of choosing the right lottery. We can derive the log-likelihood function as follows,

(14) P(R) = P(AyE[u]l+7-£>0)
=P (s > ——Awf[u])

Since we assume e~N(0,1), we estimate P(R) with
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where ®[-] denotes the CDF of the standard normal distribution. The log-likelihood is therefore given
by
(15) InL(p,t; choice,a,z) = Y-, (Choice -In (CID [AWTEM]) + (1 — Choice) - In (1 - [AWTEMD)

Generating a variable yy; with yy; = 1 if the right lottery is chosen and yy; = —1 if the left lottery is

chosen, we can rewrite (15) in more compact form. Using the detailed formulation of (13) gives

1)) xi-pla2) xi-pa2) xizp(a2)
R1 ) R2 _ L1 ) L2
<pR,1 1-paz) tDR2 1—p(a,z)> <pL,1 1-p(a,2) +DL2 1-p(@2) >

(16) InL(p,t; Choice,a,z) =Y, In| ®|yy; ——
from which we estimate our structural risk preference (p) and decision error (7) parameters, which

depend on the lottery choice, opportunity costs («), and a vector of socio-economic characteristics (z).3?

C. Non-parametric Tests for Treatment Differences Based on Individual Structural Estimates

In this section, we detail the statistical procedure used to examine the effect of higher time costs on
the quality of the decision and the revealed risk preferences. All estimates are based on estimates
conducted for each subject separately. Our sample size for the following tests is therefore equal to the
number of subjects across all treatments (N = 111).3*

In contrast to Figure 4, Figure 10 plots the structural risk and error estimates for all subjects. The left
panel plots the distribution of the estimated CRRA coefficient p for all individuals across the treatment
condition. The right panel plots the estimates of the Fechner error estimate. Instead of somewhat
arbitrary dropping the extreme observations visible in the left figure for risk preferences and in the right
figure for decision errors, we account for these observations by using, in addition to a t-test on the
difference in the means of p and 7 across treatments, a Mann-Whitney U rank sum test that treats the
individual p and 7 estimates as ordinal data, thus effectively controlling for the influence of extremely

large observations.**

32 Equation (16) also presents the functional form of the likelihood function used in the STATA program.

33 For one subject from the 100cent treatment the maximum likelihood estimator did not converge. In 92% of the decisions, this subject chose
the lottery with the highest payoff possible, thus manifesting in extremely risk-seeking behavior. The resulting CRRA coefficient of risk
aversion is p < —150, and cannot be exactly determined. The Fechner error estimate is relatively low around 7 = 0.2, because errors are
unlikely if an individual follows a simple strategy that mimics extremely risk-seeking behavior. The joint estimates presented in table 1 do not
change substantially when we omit this subject’s lottery decisions (the risk aversion difference across the control group and 100 cent treatment
becomes slightly smaller, error estimates are not altered, no change in statistical significance).

3* Using expected utility, we implicitly assume cardinal measurement of utility. The t-test on the difference in means requires p and 7 to be
measured on the interval scale. In contrast, the ordinality assumption required by the Mann-Whitney U test does not require a higher
measurement scale than usually assumed in the expected utility framework.
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Figure 10. Individual Estimates (Full Estimation Sample)

Note: N=111.

In Table 6, we provide the results of a t-test as well as the Mann-Whitney U test comparing the
treatment conditions. A t-test on the difference in risk preferences reveals no convincing statistical
evidence for a change in risk preferences across treatments. As shown in the left panel of Figure 10, the
large difference in p between the /0cent and the no costs treatment is driven by three implausibly small
p estimates in the /Ocent treatment. The corresponding Mann-Whitney U test provides a p-value of
0.140 on the null hypothesis of equality in p. Based on the Mann-Whitney U test, the probability P(p; <
pc) that a subject from the /0cent condition is more risk seeking (lower p) is 61 percent® where the 95
percent confidence interval (0.45, 0.77) contains the random ordering probability of 50 percent.

Both the parametric and non-parametric test results support the findings from Table 1 that higher
opportunity costs decrease decision quality. The number of decisions deviating from expected utility T
is significantly higher in all treatments. Interpreting the result of the Mann-Whitney U test on the
difference across the /00cent treatment, we find that the probability of a subject having a worse decision
quality (larger 7) than a subject in the no costs treatment is 90 percent (with a 95 percent confidence

interval of (0.81, 0.98)).

3 In Table 6, we report P(pr > pc), hence the probability P(p; < pc) is equal to 1 — P(p7 > pc).
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Table 6—Non-parametric Tests for Treatment Differences (Individual Estimates)

t-Test M-W U Test t-Test M-W U Test
Risk Preference  Ap p-value P(pr>pc) p-value Decision Error At p-value P(pr>pc) p-value
100cent - no 0.08 0.760 0.50 0.973  100cent - no 0.13 0.000 0.90 0.000

30cent - no costs  -0.86 0.160 0.42 0.334  30cent - no costs  0.05 0.005 0.73 0.003
10cent - no costs  -3.06 0.084 0.39 0.140  10cent - no costs  0.12 0.024 0.73 0.003

Notes: N=111. p-values based on a robust t-test and a Mann-Whitney U test are reported. Ap denotes mean difference across the CRRA
coefficient estimates across treatments, whereas At denotes the corresponding difference for the Fechner error. P(pr>pc) is the likelihood that
a subject of the corresponding treatment group (100 cent, 30cent, or 10 cent) has a higher p (1) than a subject from the control group (no costs)
(for interpretation of the test statistic, see Conroy 2012).

D. Including Holt-Laury Risk Measure

As presented in Figure 2, the Holt-Laury procedure®® was conducted before subjects engaged in
making the 180 lottery choices. The task was identical for all treatments and subjects faced no time
pressure when making their decisions.

We find no significant relation between the Holt-Laury risk measure and the structural risk measure
without the Fechner error in estimates (1) and (2) in Table 7. In Models (3) - (5), including the decision
errors, we find a significant correlation slightly above 0.3 between the Holt-Laury and structural risk
preference estimates. A correlation of below 1 is reasonable because the Holt-Laury CRRA measure is
effectively bounded within the range of (—0.95,1.37),% whereas the structural CRRA measure is not.
Furthermore, Andersson et al. (2016) show that in Holt-Laury tasks, decision errors bias the elicited CRRA

risk preferences toward risk neutrality, which also explains the relatively low correlation.®

% A screenshot of the Holt-Laury task is provided in the online appendix.

37 Based on the set of the 10 lotteries used in the Holt-Laury task, a subject always choosing option B (option A) has a CRRA coefficient of
< —0.95 (p > 1.37).

3 A correlation of the Holt-Laury risk measure with decision errors is a strong argument for not including this measure in the main specification
of the structural estimations since introducing a decision error proxy into our structure risk preference estimation, while jointly estimating the
structural decision error, creates the strong impression of a misspecified model.
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Table 7—Structural Estimates — Including Holt-Laury Measure

Only Risk Measurement Risk & Error Measurement
(1) ) 3) “ )
Parameter: p p p T p T p T
Treatments
100cent Treatment -0.314 -0.420 -0.070  0.130%** -0.102  0.112%%** -0.120  0.118%%**
(1.864) (0.682) (0.128) (0.030) (0.132) (0.030) (0.139) (0.032)
30cent Treatment -0.140 -0.222 -0.079 0.037* -0.081 0.028 -0.080 0.027
(4.659) (2.682) (0.117) (0.020) (0.109) (0.018) (0.101) (0.020)
10cent Treatment -0.332 -0.491 -0.133 0.069%* -0.153 0.036 -0.151 0.039
(3.556) (2.282) (0.109) (0.030) (0.104) (0.026) (0.096) (0.028)
Holt/Laury p 0.994 1.345 0.326%** 0.343%%* 0.3227%%%*
(0.741) (0.971) (0.112) (0.111) (0.120)
Male -0.718 -0.192%*  -0.073%** -0.177%*  -0.070%**
(1.091) (0.085) (0.022) (0.082) (0.023)
BNT Correct -0.121 -0.034 -0.007
(0.204) (0.034) (0.007)
Age (18) 0.007 0.019 -0.004
(0.074) (0.014) (0.004)
Constant -0.404 -0.073 0.010  0.160%*** 0.113  0.209%*** 0.105  0.228***
(0.477) (0.493) (0.078) (0.014) (0.087) (0.024) (0.101) (0.030)
p-value for joint significance in:
Treatments 0.998 0.416 0.636 0.000 0.487 0.003 0.430 0.004
Log-Likelihood -12988 -12936 -11806 -11706 -11672
Subjects 112 112 112 112 112
Observations 20160 20160 20160 20160 20160

Notes: The dependent variables are the Arrow-Pratt measure of relative risk aversion (p) assuming CRRA utility and the Fechner error (t).
Results in Columns (1) and (2) correspond to estimations without any treatment dependent error specification. Results in Columns (3) - (5)
correspond to joint estimates of p and 1. Block bootstrapped standard errors clustered at the individual level and based on 1,000 replications
are reported in parentheses.
*##* Significant at the 1% level.
** Significant at the 5% level.
* Significant at the 10% level.

Note that the structure of the sequence of lottery choices in the Holt-Laury task makes observing
deviation from expected utility quite unlikely,*® since subjects would have to switch more than once
between the columns. However, 13 out of 112 subjects did just this in the experiment. The Holt-Laury
measure used in Table 7, is based on the number of safe choices made by each subject and ignores choice
inconsistencies.

Unlike the lotteries used in the Holt-Laury task, the 180 lotteries used in the main part of the study
(see Appendix L for the lottery set) were constructed to cover a broad range of outcomes and
probabilities. The order in which they were presented and their position on the computer screen (left or
right) was randomized to avoid framing effects related to the order of the choices, which have been

found in Holt-Laury tasks (Lévy-Garboua et al. 2011).

3 As a result, the Holt-Laury task is not well suited to systematically investigating the quality of risky decisions. Furthermore, decision errors
might be undetected if the individual mistakenly switches early toward the risk choice and then stays with the risky choice until the end of the
table so as to behave consistently. For a review of the critique on the use of the Holt-Laury task for risk preference elicitation see Friedman et
al. (2014). Harrison and Rutstrom (2008) provide an extensive comparison of risk elicitation procedures and a description of related
econometric estimation techniques.
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E. Assumptions About Mental Accounting and Reference Points (Wealth, Income)

Throughout the paper, a von Neumann-Morgenstein (VNM) utility function is assumed. In the main
specification, we rely on the CRRA utility (x) = Jil_—_:. We do not explicitly define the utility about final

wealth, but instead calculate the utility over the lottery payoff. We add one cent to the lottery payoff to
circumvent computational problems that could arise in calculating the utility over a zero payoff.** The
Rabin Paradox (Rabin 2000) arises if one defines utility over final wealth levels and risk-averse behavior
is observed in low-stake lottery decisions. As noted in Rubinstein (2006), the vNM axioms do not require
expected utility to be defined over final wealth levels. Cox and Sadiraj (2006) and Palacios-Huerta and
Serrano (2006) show that rejecting small gambles —as we find in our experimental data —is consistent
with expected utility theory if one defines utility over income (changes in wealth) rather than wealth
levels.

As the estimates in Table 8 suggest, the treatment effect of higher opportunity costs on decision quality
as well as the stability of risk preferences hold for different assumptions about the argument of the utility
function. In Model (1) we replicate our main specification from Table 1. We find mild risk aversion in
all treatments. Incorporating €3, which is a typical show-up fee in lab experiments, in addition to the
lottery payoff gives similar results. In line with the theoretical predictions, the estimated degree of risk
aversion increases if we assume higher initial wealth values to be integrated into the lottery decision. As
we assume the integration of the subject’s monthly income*! (Model (4)), we obtain implausibly high
CRRA coefficients, suggesting that assuming utility over changes in wealth (payoffs from the lotteries)
is an appropriate assumption in our experimental setting. In general, our results are robust to different
assumptions about money in addition to the lottery payoff integrated into the utility function. Even if
we assume an instantaneous integration of the money earned from the alternative use of time (Model (5)

in Table 8) our results remain qualitatively unchanged.

40 Wakker (2008) provides a discussion on the behavior of power utility function when the argument is zero.
4 Monthly income is defined as income net of fixed costs for rent and health insurance. The average monthly income is slightly above €300.
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Table 8—Results for Different Wealth Assumptions

Risk & Error Measurement

1) 2 3) “) (5)
Endowment 0.01€ 3€ 100 € Monthly Income Time Money
Assumption.:
Parameter: p T p T p T p T p T
Treatments
100cent Treatment ~ -0.074  0.130%** -0.144  0.128%** -0.864  0.124%%* 8.818  0.116%** 0.047  0.130%**
(0.144)  (0.025) (0.309)  (0.027) (3.303)  (0.029) (9.332)  (0.030) (0.213)  (0.028)
30cent Treatment -0.154  0.065%** -0.374  0.063%#** -4.049  0.058%*%F  -0.419  0.046%** -0.087  0.064%***
(0.126)  (0.018) 0.279)  (0.019) (2.958)  (0.022) (6.176)  (0.023) (0.226)  (0.019)
10cent Treatment -0.185  0.090%* -0.391  0.086%** -3.625  0.080%* 0.502  0.067** -0.103  0.087%*
(0.113)  (0.033) (0.264)  (0.033) (2.937)  (0.033) (6.359)  (0.034) (0.229)  (0.033)
Constant 0.193%#% (,153%*%  (.479%k*k (. ]54%**  503]%%*k (.16]%** 5506 0.170%#%  0.187%#* (.]154%%*
(0.053) (0.013) (0.116)  (0.013) (1.413)  (0.015) (4.112)  (0.017) (0.052)  (0.013)
p-value for joint significance in:
Treatments 0.315 0.000 0.350 0.000 0.433 0.000 0.804 0.001 0.942 0.000
Log-Likelihood -11931 -11904 -11923 -11829 -11928
Subjects 112 112 112 111 112
Observations 20160 20160 20160 19980 20160

Notes: The dependent variables are the Arrow-Pratt measure of relative risk aversion (p) assuming CRRA utility and the Fechner error (t).
Results in Columns (1) — (5) correspond to joint estimates of p and t. Block bootstrapped standard errors clustered at the individual level and
based on 1,000 replications are reported in parentheses.
*##%* Significant at the 1% level.
** Significant at the 5% level.
* Significant at the 10% level.

F. Cognitive Skills and Decision Errors

To investigate the predictive power of cognitive skills on decision errors defined as 7 in Equation (6),
we allow several measures related to cognitive ability to be linearly correlated with decision errors. In
Column (5) in our main specification (Table 1), we report a negative correlation between the Berlin
Numeracy Test score and decision errors. Table 9 provides further results. In addition to the Berlin
Numeracy Test, we conducted a Raven Test, designed to measure fluid intelligence, after the
experiment. A higher measure of fluid intelligence is correlated with fewer decision errors. We find no
evidence for correlation of self-reported stress and math grades with decision errors. Subjects who
reported being knowledgeable about the concept of expected value were significantly less likely to make
decision errors. Finally, we conduct a plausibility check and create a dummy indicating whether a
subject was able to not violate first order stochastic dominance. As expected, subjects with the ability

to detect the dominant lottery are also less likely to make errors in the entire lottery sample.
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Table 9—Structural Estimates — Potential Decision Error Correlates

@ 2 3) “ 5)
Parameter: p T p T p T p T p T
Treatments
100cent Treatment -0.070 0.125%*%*%  -0.075 0.129*** -0.075 0.132*** -0.083 0.131*** -0.082 0.089%**
(0.136) (0.024) (0.144) (0.027)  (0.140) (0.026)  (0.143) (0.022)  (0.132) (0.020)

30cent Treatment

-0.155 0.063***

-0.156  0.064%***

-0.137  0.068%**

-0.159 0.068***

-0.150  0.062%***

(0.122) (0.018)  (0.127) (0.019)  (0.138) (0.019) (0.127) (0.017) (0.123) (0.018)
10cent Treatment -0.183 0.094***  -0.185 0.089*** -0.182 0.089*** -0.176 0.097*** -0.191* 0.037*

(0.118) (0.031)  (0.123) (0.033) (0.115) (0.032) (0.111) (0.031) (0.101) (0.022)
Raven Test Ans. -0.008%*

(0.004)
Stress 0.003
(0.009)
Math Grade 0.009
(0.013)
Know Exp. Value -0.011%*
(0.005)
No Viol. 1. Ord. SD -0.141%%*
(0.045)

constant 0.192%%%* 0.220%%* (,193%** (,148*** (,190%** 0.126%** (.191%*** (,197*** (.207*** (.288%**

(0.053) (0.042) (0.051) (0.026) (0.053) (0.041) (0.050) (0.028) (0.052) (0.047)
p-value for joint significance in:
Treatments 0.318  0.000 0.325  0.000 0.383  0.000 0.301 0.000 0.219 0.000
Log-Likelihood -11922 -11929 -11917 -11917 -11880
Subjects 112 112 112 112 112
Observations 20160 20160 20160 20160 20160

Notes: The dependent variables are the Arrow-Pratt measure of relative risk aversion (p) assuming CRRA utility and the Fechner error (t).
Results in Columns (1) — (5) correspond to joint estimates of p and t. Block bootstrapped standard errors clustered at the individual level and
based on 1000 replications are reported in parentheses.
*#% Significant at the 1% level.
** Significant at the 5% level.
* Significant at the 10% level.

Equation (6) specifies the nonlinear relationship between the measure of risk aversion included in the
utility difference AE [u(p; £)] and the decision error 7. Allowing for a linear correlation between proxies
of cognitive skills and decision errors might affect the risk aversion measure p indirectly by effecting
the decision error 7. In addition to the indirect link between risk aversion and cognitive skills, one could also
allow cognitive skills to be directly correlated with the risk aversion measure.

Since our structural estimation approach, already allows for a (nonlinear) association between the risk
measure and decision errors, we have neither a theoretical prediction nor a sufficient understanding of
the indirect and direct effects of cognitive skills on risk aversion. For completeness, we provide the
results in Table 10, but acknowledge that the specification on which the results are based, has no
economic foundation. Similar to the absence of a correlation between numeracy skills and risk aversion
in our main specification (Table 1, Column (5)), we find no evidence of a correlation between any of
the cognitive skills proxy and risk aversion. This result is in contrast to Benjamin, Brown, and Shapiro
(2013) and Dohmen et al. (2010). However, both those studies rely on a reduced-form estimate of risk

preferences, ignoring an explicit consideration of decision errors. Furthermore, their results are based
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on a Holt-Laury choice list (Holt and Laury 2002). Andersson et al. (2016) replicate the results of
Dohmen et al. (2010) and find that the correlation between risk aversion and cognitive skills is an artifact
of the choice list procedure. In line with Andersson et al. (2016) and the results in our paper, (Sutter et
al. 2013)) find no evidence for any correlation between risk aversion and cognitive skills as measured

by math and German school grades.

Table 10—Structural Estimates — Potential Decision Error Correlates II

Risk & Error Measurement

@ (@) 3) (G (&)
Parameter: p T p T p T p T p T
Treatments
100cent Treatment -0.071 0.125%%*  -0.073 0.129***  -0.069 0.133***  -0.081 0.129***  -0.063 0.091***
(0.141) (0.024)  (0.148) (0.027)  (0.144) (0.028)  (0.143) (0.022) (0.135) (0.022)
30cent Treatment -0.155 0.063***  -0.148 0.062***  -0.114 0.054**  -0.158 0.068*** -0.147 0.060%**
(0.125) (0.017)  (0.122) (0.019)  (0.126) (0.024)  (0.130) (0.016)  (0.123) (0.018)
10cent Treatment -0.184  0.094***  -0.177 0.088***  -0.181 0.088*** -0.177 0.099%** -0.177* 0.040*
(0.116) (0.032)  (0.120) (0.031)  (0.119) (0.030) (0.117) (0.030)  (0.100) (0.022)
Raven Test Ans. -0.002  -0.008*
(0.017) (0.004)
Stress 0.017 0.001
(0.039) (0.009)
Math Grade -0.046  0.012
(0.049) (0.013)
Know Exp. Value -0.009 -0.011%%*
(0.020) (0.006)
No Viol. 1. Ord. SD 0.205 -0.144%%*%*
(0.174)  (0.046)
Constant 0.207 0.220%**  0.151 0.151%%% 0.315%* 0.120%** 0.231** 0.197**%*  0.011 0.290%**
(0.170) (0.044)  (0.114) (0.025) (0.141) (0.041) (0.105) (0.029) (0.175) (0.048)
p-value for joint significance in:
Treatments 0.337 0.000 0.393 0.000 0.445 0.000 0.347 0.000 0.282 0.000
Log-Likelihood -11922 -11929 -11917 -11915 -11865
Subjects 112 112 112 112 112
Observations 20160 20160 20160 20160 20160

Notes: The dependent variables are the Arrow-Pratt measure of relative risk aversion (p) assuming CRRA utility and the Fechner error (t).
Results in Columns (1) — (5) correspond to joint estimates of p and t. Block bootstrapped standard errors clustered at the individual level and
based on 1,000 replications are reported in parentheses.
*##% Significant at the 1% level.
*#* Significant at the 5% level.
* Significant at the 10% level.

G. Alternative Utility Function —Expo-Power Utility
The CRRA utility function is the utility function in economic models of decision-making under risk
in economics (Wakker 2008). Holt and Laury (2002) relied on CRRA utility when constructing the Holt-
Laury risk elicitation procedure in experimental economics. CRRA utility nests the analytically tractable
log utility, which is predominant in theoretical models in micro- and macroeconomics. Following the
ideas outlined in Rabin (2013a, 2013b), our aim is to develop a simple model that incorporates the trade-
off between decision quality and costs so as to incrementally improve economic theory. Our economic

model is technically trivial, which (we hope) makes it a portable extension of existing models (Rabin



2013b) and provides an easy way to incorporate a psychologically more realistic notion of rationality in
a wide range of economic applications.

To empirically validate the predictions of our model, we find it natural to choose a utility function
that is widely used in empirical and theoretical work in economics. To check how robust our results are
with respect to the specification of the utility function,** we estimate the expo-power utility function,
suggested by Holt and Laury (2002) and first proposed by Saha (1993) of the following form: u(x) =
(1 —exp(—ax'=P))/a) with a# 0, 1—p #0, and a- (1 —p) > 0. Since —u""(x) - x/u'(x) = p +
a(1 — p)x*~P, the function includes constant absolute and constant relative risk aversion as special
cases. When a goes to zero, p can be interpreted as the CRRA coefficient, whereas with p approaching
zero and a > 0, the function exhibits CARA of a. For cases in-between, with a and (1 — p) being
positive, the function has the properties of increasing relative, and decreasing absolute, risk aversion.

Similar to our main specification, we rely on the Fechner error specification to reflect decision errors
and include the utility normalization according to Wilcox (2011). Table 11 presents the results. Column
(1) presents estimates without allowing for heterogeneity of decision errors (no Fechner error). The
parameter a seems to be stable across treatments and is not statistically different from zero; therefore p
can be (approximately) interpreted as CRRA coefficient. The results of Model (1) in Table 11 suggest
implausibly high estimates of p = —2.667 for the control group, suggesting that this group is extremely
fond of takings risks. The estimates in Columns (2) and (3) include the Fechner error and support the
previously established pattern of increasing decision errors as a reaction to higher opportunity costs. We
also obtain quantitatively much smaller and more plausible estimates of the risk preferences. The
parameter estimates of p and a in Columns (2) and (3) jointly determine the risk preferences. Since both
p and a are imprecisely measured, an interpretation of the change in risk preferences would be
speculative. The resulting high p-values of the joint treatment effect seem to provide no hard evidence
against the assumption of stable risk preferences with respect to changes in the opportunity costs of
decision-making. However, note that, for example, in Column (2), p and a are positive for the control
group suggesting increasing relative risk aversion.

In summary, the results presented in Table 11 indicate that both the increase in decision errors and the
absence of systematic change in risk preferences caused by higher opportunity costs are not artifacts of
the imposed CRRA utility function in our main specification. In Section J of this appendix, we further
show that the same decision error pattern can be found when the parameter free expected value choice

criteria (imposing risk neutrality) is used.

“2 In Section J, we reproduce our results with respect to the pattern in decision quality, under the assumption that the decision maker is risk
neutral und uses the parameter-free concept of maximizing the expected value.
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Table 11—Structural Estimates — Expo-Power Utility

Risk & Error Measurement

)] (2) (3)
Parameter: p a p a T p a T
Treatments
100cent Treatment ~ 2.198* 0.034 -0.156 0.011  0.133%#** -0.300 0.005  0.1227%**
(1.244)  (0.062) (0.154)  (0.020)  (0.026) (0.329) (57.495) (0.029)
30cent Treatment 2.224% -0.007 -0.099 -0.025  0.064%%*%* -0.107 -0.031  0.041°%*

(1.246)  (0.046) (0.130)  (0.021)  (0.018) (0.268) (15.370)  (0.020)
10cent Treatment 1.927 0.001 -0.232%*  -0.005  0.090%** -0.219 -0.012  0.053*
(1.218)  (0.034) (0.114)  (0.017)  (0.034) (0.156)  (0.974)  (0.031)

Male -0.095 -0.034  -0.073%**
(0.168)  (0.037)  (0.028)

BNT Correct -0.034 -0.006 -0.012
(0.059) (0.011)  (0.008)

Age (18) 0.032 -0.000 -0.004
(0.020)  (0.007)  (0.005)

Constant -2.667**  0.016 0.125%*%  0.029%** (.155%** 0.124 0.066%  0.237*%**
(1.104) ~ (0.029) (0.063) (0.010)  (0.013) (0.115)  (0.038)  (0.033)

p-value for joint significance in:

Treatments 0.316 0.939 0.206 0.552 0.000 0.482 1.000 0.001
Log-Likelihood -12989 -11911 -11751

Subjects 112 112 112
Observations 20160 20160 20160

Notes: The dependent variables are the Arrow-Pratt measure of relative risk aversion (p) assuming expo-power utility (u(x) = (1 —
exp(—ax'~?))/a) and the Fechner error (t). Results in Columns (1) — (3) correspond to joint estimates of p, a and 1. Block bootstrapped
standard errors clustered at the individual level and based on 1,000 replications are reported in parentheses.
*#% Significant at the 1% level.
** Significant at the 5% level.
* Significant at the 10% level.

H. Results of the Drift-Diffusion Model for Individual Risk and Error Estimates
In this section, we provide additional results on the comparison across treatments of the DDM
estimates. In the main text, we used the risk preferences elicited in Model 5 of Table 1. Heterogeneity
across individuals is allowed to be across treatments as well as across the social-economic controls
included in Model 5 of Table 1. The following two tables reproduce the results presented in Table 3 and
Table 4 in the main text, allowing for full individual heterogeneity. The risk preferences, used to

determine the correct choice, are obtained from individual estimates (Figure 4).
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Table 12—Estimates of the Drift Diffusion Model

Decision Criteria: Expected Utility

no cost 10cent  30cent 100 cent

Decision Boundaries (B) 2.74 1.74 1.66 1.36
p-value (Hy: no cost = treatment) - [0.000] [0.000] [0.000]
Drift Rate (1) 042 0.59 0.72 0.68
p-value (Hy: no cost = treatment) - [0.004] [0.000] [0.001]
Non-Decisional Time (NDT) 1.26 1.07 1.08 0.86
p-value (Hy: no cost = treatment) - [0.029] [0.031] [0.000]

Notes: Parameter estimates of the drift diffusion model based on individual estimates for each subject in all treatments (N=111). P-values based
on pairwise t-test on the difference between subjects in the control group (no cost) and subjects in the corresponding treatment are reported in
brackets. We set ¢ = 1 in the stochastic component of the DDM (e~N (0, %)) to identify the parameters of the DDM (see e.g. Ratcliff, (1978);
Krajbich, Oud, and Fehr et al., (2014)). Since the position of the two lotteries was randomized in the experiment and both lotteries were
presented simultaneously, we fix he starting point of the RDV as the middle between the two lotteries (no initial bias toward a specific lottery).

In addition to the fitted parameters B, u, and NDT, we also estimate the parameters related to the variability of the drift rate 4 and the starting
point of the RDV (results available on request).

Table 13—Predictions of the Drift Diffusion Model

Pred. Prob. of Correct Choice (%) Pred. Decision Time ()

nocost 10cent 30cent 100cent nocost 10cent 30cent 100 cent

Prediction of the DDM due to change in

Boundaries (AB) 83.5% 73.7% 72.8% 69.2% 2.60 1.75 1.70 1.50
Drift (Au) 68.7% T74.9% 79.0% 78.3% 1.90 1.86 1.83 1.84
Both (AB & Ap) 75.7% 733% 763% 71.5% 2.74 1.75 1.68 1.50

Notes: Predictions of the DDM for the probability of a correct choice ((#) and the decision time (£;) are presented. The predictions are based
on 500001 simulations with all remaining parameters set at their sample mean values. The correct choice is determined from the utility
difference based on the individual estimates of the CRRA coefficient (Figure 4).

1. Lottery Stake Size

One natural factor altering the incentives to allocate time between decision-making and the alternative
income opportunity is the amount of money at stake in the lottery decision. Several information cues
might help the decision maker to get a rough estimate of the importance of the lottery decision. In Table
14 we include different covariates, such as a dummy variable that equals 1 if one lottery has the potential
to create a payoff larger than €20, as well as the sum, mean, and maximum of all lottery outcomes in the
structural estimation of risk and decision errors to account for potential information cues. Although we
find no evidence for a systematic change in risk preferences, we find significant lower error rates in all

specification in Table 14 w.r.t. to higher potential size of the outcomes.



Table 14—Structural Estimates and Lottery Stake Size

Risk & Error Measurement
1 2) 3) )

Parameter: p T p T p T p T

Treatments

100cent Treatment -0.067  0.130***  -0.063  0.127*%**  -0.063 0.127***  -0.063  0.128%**
(0.147)  (0.026) (0.135)  (0.026) (0.142)  (0.026) (0.148)  (0.028)

30cent Treatment -0.149  0.063***  -0.148  0.061%**  -0.148 0.061%**  -0.145  0.059%**
(0.126)  (0.019) (0.122)  (0.019) (0.121)  (0.019) (0.128)  (0.022)

10cent Treatment  -0.176  0.087#%%  -0.172  0.084**  -0.172 0.084*** 0171  0.082%*
©.111)  (0.032)  (0.119)  (0.034)  (0.118) (0.031)  (0.118)  (0.033)
High Stake (>20€)  -0.043  -0.049%++
0.041)  (0.019)

Sum of Outcomes 0.000  -0.001%%*%*
(0.001)  (0.000)

Mean of Outcomes 0.000 -0.003%***
(0.003)  (0.001)

Max of Outcomes -0.001  -0.001%***
(0.001)  (0.000)

Constant 0.189%** (.155%** (0.184*** (.168%** (.184*** (.168*** (0.197*** (.169%**
(0.053)  (0.013) (0.060)  (0.015) (0.061)  (0.015) (0.061)  (0.014)

p-value for joint significance in:

Treatments 0.322 0.000 0.396 0.000 0.375 0.000 0.421 0.000
Log-Likelihood -11929 -11925 -11925 -11920
Subjects 112 112 112 112
Observations 20160 20160 20160 20160

Notes: The dependent variables are the Arrow-Pratt measure of relative risk aversion (p) assuming CRRA utility and the Fechner error (7).
Results in Columns (1) — (4) correspond to joint estimates of p and 1. Block bootstrapped standard errors clustered at the individual level and
based on 1,000 replications are reported in parentheses.
*#% Significant at the 1% level.
** Significant at the 5% level.
* Significant at the 10% level.

Note that based on our econometric specification, the probability of making a decision error (Equation
(14)) is a function of 7 and AE[u]. If the decision error is dependent on lottery characteristics such as
the information cues about the importance of the lottery decision as introduced in Table 14, then these
characteristics must have an influence on the decision error conditional on AE[u]. One way to
incorporate a rational response to information cues in the economic model introduced in Section III is
presented below. Assuming again that R > L, including the time constraint in the maximization problem
from Equation (1), and defining the structure of the utility related to the lottery decision as U =

w(ty,y,6)  E[u(R)] + (1 —7(ty, v, 6)) - E[u(L)] gives the following maximization problem:
(17) mtax T[(tdi Y, 6) ' E[U(R)] + (1 - T[(tdi Y, 6)) ' E[u(l‘)] + uo(l —tg, a),
d

the optimal allocation of time invested in the lottery decision t, is given by

du,

(18) (EMu®)] - Eu@D 51 = -5

In addition to the assumption that more time invested in the lottery decision increases the quality of the
decision (d/dty; > 0), we assume that the increase in the decision quality becomes smaller as more

time is invested (9%m/adt5 < 0). This seems natural since the probability 7 cannot exceed 1; hence an
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appropriate structure of the function for 7 should suffice lim;, ,,, 7 = 1. The LHS of Equation (18)
denotes the (positive) marginal utility of time invested in the lottery decision, while the RHS describes
the marginal decline in utility derived from the alternative opportunity du,/dt; < 0.

The expected utility difference AE[u] = E[u(R)] — E[u(L)] in the optimality condition (18) can be
interpreted as importance of the decision, as it determines the size of the utility gain from a correct
lottery choice. To account for information cues regarding the importance of the lottery decision assume
further that the decision maker’s prior belief (before the information about the lotteries is presented)
about the expected utility difference is given as a random variable with zero mean and standard deviation
o such that AE[u] ~ N(0,52). In the optimality condition (18), we assume R > L < AE[u] > 0. Since
we assumed AE[u] ~ N(0,02), AE[u] is truncated and normally distributed within the interval AE[u] €
(0, ). The conditional expectation of AE[u] is given by E[AE[u]|AE[u] > 0] = 0+/2/mi = 0.80, where
mi ~ 3.14159, refers to the mathematical constant.** Replacing E[u(R)] —E[u(L)] with
E[AE[u]| AE[u] > 0] = a\/% in Equation (18) gives

com _ 0u,
(19) o Z/ma—td— 2t
Further assume that high lottery payoffs are interpreted as a signal for the possibility of a large AE[u],

represented by a higher variance o2 in AE[u]. A high lottery payoff could then —without changing the

a priori mean of the distribution of Am], which is still zero (AFE\[E] ~ N(0,0?)) —lead to more time
being invested in the decision because a higher o would require a lower dm/dt,, which requires a larger
t4 due to the concavity of r in ¢t .

The extension of the model presented in this section can be interpreted as a two-stage process. In the
first stage, the decision maker evaluates the importance of the lottery decision by making a heuristic
judgment based on the lottery payoffs. Based on this judgment, the decision maker decides how much
time he wants to invest in the lottery decision based on the optimality condition (19)). In the second

stage, the decision maker decides among the lotteries.

J. Structural Estimates with Parameter Constraints
Table 15 sets out results of structural estimations using different parameter constraints. In
specification (1), we restrict p to be equal to zero. In this case the expected utility model for decision-
making under risk collapses to a parameter free expected value model, which is the preferred choice
model under risk for many psychologists and some economists (Friedman et al. 2014). Using expected
value as decision criteria, we find that the decision error pattern* is quite similar to our main

specifications. In specification (2), we fix p to p = 0.193 for all treatment groups, which corresponds to

43 The general form of the conditional expectation of AE [u] with AE[u] > a and mean E[AE [u]| AE[u] > 0] = o - A(a), where A(a) denotes
the Inverse Mills Ratio A(a) = ¢(a)/ (1 — dD(a)) and @ = (a — w)/o. With u = 0 and a = 0, the conditional expectation of AE[u] can be
simplified to E[AE[u]| AE[u] > 0] = o/ 2/mi.

4 The interpretation of T as decision error depends on the specification of the decision criteria. In specification (1) in Table 15, a decision error
is therefore defined as “choosing the lottery with lower expected value.” If expected utility is the preferred normative model and one assumes
mild risk aversion (as appears to be the case for the majority of the subjects in our experiment), then a choice against the lottery with the highest
expected value might still be a normatively correct decision.
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estimate for the control group in our main specification (Table 1, Column (4)). In specification (3), we
somewhat arbitrarily restrict p to be p = 0.5. In both specifications, we see similar decision error
patterns. Compared to specification (2), estimates for 7, the parameter representing decision errors, are
higher in specification (3). This is what one would expect when fixing p to a value farther away from
the true value of the risk aversion parameter (which is based on the results in Table 1, Column (4) in the
range p = [0.008,0.193]). In specification (4), we allow for no heterogeneity in the decision error. By
fixing T = 1, we obtain a result similar to the one obtained from a model without an explicit Fechner

error (compare Table 1, Column (1)).

Table 15—Structural Estimates with parameter Constraints

Risk & Error Measurement

@ @ 3 @

Constraints: Exp. Val.: pyreqr = 0 Ptreat = 0.193 Ptrear = 0.5 Tereat = 1
Parameter: p T p T p T p T
Treatments
100cent Treatment 0.119%** 0.1327%** 0.166** -0.247
(0.033) (0.026) (0.071) (2.777)
30cent Treatment 0.044* 0.071%** 0.151%%* -0.589
(0.025) (0.019) (0.073) (7.102)
10cent Treatment 0.066* 0.097*** 0.185%** -0.624
(0.037) (0.033) (0.071) (2.973)
Constant 0 0.178%*** 0.193 0.153%*** 0.5 0.265%** 0.233 1
(0.017) (0.013) (0.029) (0.151)
p-value for joint significance in:
Treatments - 0.002 - 0.000 - 0.006 0.996 -
Log-Likelihood -12026 -12002 -12772 -13049
Subjects 112 112 112 112
Observations 20160 20160 20160 20160

Notes: The dependent variables are the Arrow-Pratt measure of relative risk aversion (p) assuming CRRA utility and the Fechner error (7).
Results in Columns (1) — (4) correspond to joint estimates of p and 1. Block bootstrapped standard errors clustered at the individual level and
based on 1,000 replications are reported in parentheses.
*#%* Significant at the 1% level.
** Significant at the 5% level.
* Significant at the 10% level.

K. Learning During the Experiment and Results from Subsamples

In each of the treatment conditions, subjects had to make the same 180 lottery decisions. The order of
the lottery was randomized but similar for all 112 subjects. To investigate potential learning effects, we
split the lottery sample into four subsamples of 45 lotteries. We also investigate the entire sample, but
include a linear and a reciprocal time trend by including the variables round # and [ / round #. Four
subsamples and two time trend conditions give us 3 x (4 + 2) = 18 coefficients for each structural
parameter. With respect to the risk aversion parameter p, we find one coefficient to be significant at the
5% level and one coefficient significant at the 10% level, which can be interpreted as driven by chance.
The coefficient estimates of the decision error 7 are significant at least at the 10% level in 17 out of 18
cases. The analysis of the subsamples does not reveal an unambiguous learning pattern in the treatment

effects of the structural estimates. In general, the results in all specifications in Table 16 are fairly similar



to the main specification reported in Table 1 and provide further robustness to the results of our main

specification.

Table 16—Subsamples and Trends
Risk & Error Measurement
Subsamples 4 45 Lotteries Linear Trend 1/round
(round)
&) @) (3) “) ) (6)
Parameter: p T p T p T p T p T p T
Treatments

100cent Treatm. ~ 0.145 0.129%**  -0.155 0.094*** -0.115 0.140*** -0.178 0.126¥**  -0.057 0.122*** -0.071 0.117***
(0.116) (0.029) (0.147) (0.027) (0.153) (0.050) (0.189) (0.039) (0.126) (0.026) (0.133) (0.024)

30cent Treatment -0.065 0.072*** -0.156 0.073*** -0.198 0.059** -0.181 0.044*  -0.142 0.061*** -0.151 0.059%**
(0.128) (0.021) (0.155) (0.023) (0.125) (0.027) (0.142) (0.024) (0.118) (0.018) (0.123) (0.018)

10cent Treatment -0.070 0.162*** -0.236* 0.068** -0.257** 0.029 -0.112 0.093**  -0.172 0.088*** -0.174 0.075%**
(0.143) (0.052) (0.130) (0.029) (0.102) (0.025) (0.126) (0.042) (0.111) (0.032) (0.108) (0.029)

Round # -0.001*** -0.000
(0.000) (0.000)
1/Round # 1.809%** (0.494***
(0.385) (0.094)
constant 0.247%%* 0.134%%* 0.186%** 0.146%** (0.228*** 0.181***  0.102 0.143*** (.319%%* (.155%** (0.144%** (.144***

(0.054) (0.015) (0.061) (0.016) (0.052) (0.015) (0.066) (0.017) (0.054) (0.016) (0.054) (0.012)

p-value for joint significance in:

Treatments 0.469  0.000 0.243  0.001 0.051  0.011 0.502  0.003 0.363 0.000 0.328  0.000
Log-Likelihood -2947 -2966 -3107 -2840 -11900 -11872
Subjects 112 112 112 112 112 112
Observations 5040 5040 5040 5040 20160 20160

Notes: The dependent variables are the Arrow-Pratt measure of relative risk aversion (p) assuming CRRA utility and the Fechner error (t).
Standard errors clustered at the individual level and based on 1000 replications are reported in parentheses.
*##% Significant at the 1% level.
** Significant at the 5% level.
* Significant at the 10% level.

Despite no evidence of learning effects with respect to the treatment parameters, we find that subjects
become slightly less risk averse in later lottery decisions (Column (5) and (6), Table 16). The reciprocal
trend specification reveals a strong negative effect of learning, approximated by lottery choice
experience in the experiment, on decision errors. While the learning effect on decision errors is
significant at the 1% level in the reciprocal specification (Column (6)), it is not to be found in the linear
specification (Column (5)). On explanation might be that learning occurs mainly during the first lottery

decisions of the experiment, with no further improvement as further lottery decisions are made.

L. Table of Lotteries Played in the Experiment
The following table presents the exact lottery pairs played by each individual in all treatment
conditions. The lotteries were constructed to cover a broad variation of probabilities and outcomes. After
construction of the lottery pairs, the position of each lottery (left or right) was determined using a random
mechanism. The first 90 lotteries share the property that the lowest payoff of each lottery was always

zero. This assumption was relaxed for the last 90 lotteries. The order of the lotteries in the two blocks



of 90 lotteries was determined using a random number generator, which produced the order denoted in
Table 17.

The first six lottery pairs control 1 to control 6 were used in the instructions of the experiment and
were not incentivized. Subjects had to correctly answer control questions concerning the lottery payoffs
and the time payoffs. The experiment started with pair 1 and ended with pair 180. Each individual had
to make 180 lottery choices. In each opportunity cost treatment, subjects faced the same lottery pairs in
the same order. At the end of the experiment, we used an individual random lottery incentive procedure
(Starmer and Sugden 1991) to determine two of the 180 lottery pair decisions to use in paying off
subject.* The two selected lotteries in both lottery pairs were then played using a random number
generator to determine the subject’s payoff. This procedure was used to avoid problems caused by
reference-point or wealth effects (Starmer and Sugden 1991). The absence of feedback and the large
number of uncorrelated lotteries from which two are chosen for payoff purposes are properties of our
experimental design that reduce the likelihood of problems described in Cox et al. (2014) related to the

random lottery incentive scheme based on the integration of all lottery choices as one compound lottery.

45 The random lottery mechanism is used in several prominent experiments investigating decisions under risk: for a survey, see Harrison and
Rutstrom (2008).
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Table 17— Lottery Set

Lottery Number Left Lottery Right Lottery Lottery Number Left Lottery Right Lottery
P1 P2 X1 X P1 P2 X1 X2 P1 P2 X1 Xz P1 P2 X1 X3
control 1 9 10 45 0 10 90 35 0 88 9 10 02 0 10 9 15 0
control 2 67 33 6 0 33 67 10 O 89 9 10 05 0 10 9 45 0
control 3 80 20 5 0 20 80 5 O 90 40 60 3 O 60 40 13 0
control 4 25 75 4 0 75 25 2 0 91 75 25 1 07 25 75 8 O
control 5 50 50 3 01 50 50 4 0.1 92 75 25 65 1 25 75 15 1
control 6 60 40 10 04 40 60 15 0.2 93 53 47 17 01 47 53 20 0.1
1 53 47 47 0 47 53 53 0 94 40 60 95 0.1 60 40 0.1 0.1
2 75 25 32 0 25 75 15 0 95 50 50 10 0 100 O 5 O
3 9 10 51 0 10 90 49 0 96 25 75 26 0 100 0 65 0
4 25 75 20 O 75 25 23 0 97 80 20 75 0O 100 0 6 O
5 9 10 35 0 9 10 35 0 98 95 5 9 0 100 0 7 O
6 75 25 1 0 25 75 5 0 99 50 50 16 0 100 0 65 0
7 47 53 75 0 53 47 68 0 100 5 95 100 0 100 0 55 O
8 60 40 85 0 40 60 15 O 101 40 60 3 O 60 40 13 1.1
9 25 75 6 0 75 25 15 0 102 75 25 45 05 75 25 45 05
10 40 60 42 0 60 40 51 O 103 50 50 5 0 50 50 6 0
11 53 47 51 0 47 53 6 0 104 75 25 23 01 25 75 5 0
12 75 25 15 0 25 75 715 0 105 60 40 29 1 40 60 5 2
13 60 40 65 0 40 60 9 0 106 9 10 02 01 10 9 20 0.1
14 75 25 38 0 25 75 9 0 107 40 60 55 0.1 60 40 45 12
15 40 60 15 0 60 40 02 O 108 47 53 14 02 53 47 12 13
16 10 9 81 O 90 10 1 0 109 60 40 45 33 40 60 99 0.1
17 40 60 95 0 60 40 01 O 110 90 10 2.7 1 10 90 15 12
18 25 75 75 0 75 25 08 O 111 75 25 01 01 25 75 95 0.1
19 25 75 20 O 75 25 85 0 112 47 53 8 01 53 47 1 0.1
20 53 47 59 0 47 53 75 0 113 40 60 75 0.1 60 40 54 0.1
21 40 60 6 O 60 40 33 O 114 47 53 75 0.1 53 47 59 0.1
22 40 60 15 O 60 40 6.7 O 115 10 90 6 01 9 10 04 0.1
23 25 75 2 0 75 25 4 0 116 9 10 01 O 10 9 9 0
24 10 90 20 O 9 10 02 O 117 75025 23 1 25 75 20 0.1
25 53 47 55 0 47 53 6 0 118 100 0 7 0 95 5 9 0
26 40 60 15 0 60 40 10 O 119 75 25 1 01 25 75 3 0.1
27 25 75 15 0 75 25 16 O 120 100 0 65 0 50 50 16 O
28 25 75 9 0 75 25 12 0 121 60 40 85 25 40 60 15 0.1
29 10 90 15 0 9 10 02 O 122 25 75 20 15 75 25 85 0.1
30 60 40 34 0 40 60 75 0 123 47 53 15 0.1 53 47 14 0.1
31 100 90 9 0 9 10 01 O 124 60 40 2 01 40 60 6 0.1
32 10 9 15 0 90 10 27 O 125 75 25 5 03 25 75 15 0.1
33 40 60 51 0 60 40 5 O 126 25 75 75 01 75 25 1.5 1.1
34 10 90 20 O 9 10 37 0 127 40 60 15 0.1 60 40 11 0.1
35 40 60 75 0 60 40 54 0 128 100 0 6 O 80 20 75 O
36 9 10 1 0 10 9 9 0 129 60 40 65 01 40 60 9 0.1
37 53 47 87 0 47 53 13 0 130 40 60 42 05 60 40 5.1 0.1
38 47 53 6 0 53 47 47 0 131 100 0 55 0 5 95 100 0
39 60 40 45 0 40 60 99 0 132 10 99 6 01 9 10 01 0.1
40 9 10 3 0 10 9 27 0 133 40 60 15 0.1 60 40 6.7 0.1
41 25 75 6 0 75 25 06 O 134 53 47 7.1 01 47 53 9 0.1
42 60 40 45 0 40 60 55 0 135 53 47 4 15 47 53 35 2
43 47 53 15 0 53 47 14 0 136 2575 9 01 75 25 12 0.1
44 60 40 44 O 40 60 6 0 137 25 75 15 01 75 25 05 0.1
45 75 25 07 0 25 75 9 0 138 10 9 9 01 9 10 1 0.1
46 75 25 01 0 25 75 95 0 139 47 53 53 0.8 53 47 47 05
47 75 25 41 0 25 75 20 O 140 25 75 26 0 100 0 65 0
48 25 75 3 0 75 25 1 0 141 10 9 6 01 9 10 1.1 0.1
49 40 60 75 0 60 40 5 O 142 9 10 51 1.2 10 9 49 0.1
50 9 10 01 © 100 9 18 0 143 9 10 02 01 10 9 15 0.1
51 25 75 55 0 75 25 45 0 144 10 90 45 0 90 10 05 03
52 75 25 51 0 25 75 49 0 145 60 40 42 16 40 60 75 05
53 100 90 9 0 9 10 1.6 O 146 53 47 53 01 47 53 6 0.1
54 47 53 8 0 53 47 1 0 147 9 10 1 01 10 9 81 0.1
55 10 90 9 0 9 10 05 O 148 40 60 5 0.1 60 40 22 0.1
56 9 10 0.7 0 10 9 15 0 149 40 60 20 0.1 60 40 11 0.1
57 25 75 15 0 75 25 05 0 150 10 9 9 13 9 10 3 0.1
58 40 60 18 O 60 40 7 O 151 25 75 7 0 75 25 33 22
59 60 40 4 O 40 60 6 0 152 40 60 5.1 0.1 60 40 5 0.1
60 47 53 35 0 53 47 4 0 153 53 47 99 2 47 53 10 1
61 60 40 29 0 40 60 S5 0 154 75 25 51 01 25 75 49 0.1
62 10 90 6 0 90 10 04 O 155 47 53 75 0.1 53 47 63 0.1
63 25 75 15 0 75 25 02 O 156 40 60 6 0.1 60 40 44 0.1
64 53 47 51 O 47 53 49 0 157 40 60 75 O 60 40 34 0.1
65 47 53 6 0 53 47 53 0 158 50 50 10 0 100 0 5 0
66 47 53 15 0 53 47 12 0 159 10 9 18 01 9 10 0.1 0.1
67 25 75 15 0 75 25 5 0 160 75 25 16 01 25 75 15 0.1
68 47 53 28 0 53 47 25 0 161 10 9 2 01 9 10 4 0.1
69 75 25 33 0 25 75 99 0 162 25 75 20 01 75 25 4.1 21
70 53 47 71 0 47 53 9 0 163 40 60 15 0.1 60 40 02 0.1
71 60 40 42 0 40 60 75 0 164 75 25 38 01 25 75 9 03
72 60 40 22 0 40 60 5 0 165 10 9 20 01 90 10 3.7 0.1
73 47 53 10 0 53 47 99 0 166 53 47 51 01 47 53 49 0.1
74 40 60 6 O 60 40 2 O 167 7525 1 05 25 75 3 01
75 25 75 15 0 75 25 65 0 168 47 53 6 0.1 53 47 47 0.1
76 60 40 11 O 40 60 15 0 169 53 47 5 2 47 53 51 1
77 53 47 75 0 53 47 75 0 170 40 60 18 0.1 60 40 7 0.1
78 47 53 10 O 53 47 12 0 171 25 75 6 01 75 25 26 0.1
79 10 90 75 0 9 10 01 O 172 10 9 15 01 9 10 0.7 04
80 9 10 1.1 0 100 9 6 0 173 40 60 15 05 60 40 10 0.1
81 53 47 63 0 47 53 75 0 174 25 75 95 15 25 75 95 15
82 75 25 26 0 25 75 6 0 175 53 47 87 01 47 53 13 0.1
83 53 47 5 0 47 53 51 0 176 9 10 02 01 10 90 15 0.1
84 10 90 6 0 9 10 01 O 177 75 25 08 0 25 75 715 0
85 53 47 17 O 47 53 20 0 178 75 25 02 01 25 75 15 0.1
86 60 40 11 0 40 60 20 O 179 9 10 5 2 10 9 21 0.1
87 60 40 3 0 40 60 51 0 180 53 47 25 01 47 53 28 0.1
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Online Appendix

Figure 2 presents the timeline of our experiment. The following online appendix provides screenshots

of each of the four stages of the experiment (in German).

Berlin Numeracy Test

Lottery Choices

Raven's Test

* Measuring risk
preferences

* Measuring

general numeracy
skills

* Measuring
cognitive
depletion

Figure 2. Setup of the Experiment (Reproduced from the Paper)

Notes: The figure presents the timeline during the experimental sessions. After the experiment, a questionnaire on socio-economic
characteristics was given. Some subjects had to wait for nearly 30 minutes at the end, but they were allowed to play a version of Tetris and
Minesweeper when done.

Verblelbende Zelt [sec] 299

Frage 1

Stelen Sie sich vor, wir werfen ginen funfssitigen Worel 50 mal

Von diesen 50 Wirfen, wie hiuflg wirde dieger finfseitige Wilrfel
durchschnittlich eine ungerade (1,3 oder 5) zeigen?

7 5 von 50 Wiren

25 von 50 Wilrfen

30 von 50 Wiirfen

™ keing von den Anbworlen

Waiter

Figure 11. Example Question from the Berlin Numeracy Test
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Teil 2

Sie werden in dizgem Tell insgesamt 10 Entscheidungen treffen. Bl jeder Lntscheidung haben Sie die MOgichkelt
| entweder Option A oder Option B zu wahizn. Alle 10 Entscheidungen werden lhnen dahei in einer Tabelle wie untan
|angezeinl: In jedar Zele (st eing der 2ehn Entscheidungen.

Entscheidung Option A Tption B
1 2.00 mit 10% 1.60 mit 30% r r 260 mit 10% 0.10 mit 30%
2 2.00 mi 20% 1.60 mit 80% r r 3,685 mit 20% 010 mit 80%
3 Z00mA30%  1EbmRI0% T r ABLMANR 010 MR 70%
4 ZD0MAAD%  1EDmRED% [ T ABSMAAD% 010 mtE0%

2.00 mi 50% 1 60 mit 50% 3805 mit 50% 010 mi 50%

o

B 2.00 mi 80% 1.60 mit 40% r r 38O ML E0% 0.10 mit 40%
7 200 mil T0% 160 mit 30% r r 385 mit TO% 010 mit 30%
B 2.00 Ml 80% 1,60 mit 20% r r 3,85 mit 80% Q.10 mit 20%
a2 2.00 mil 90% 1.60 mit 10% r r 385 mit 90% 010 mit 10%
10 200 mil 100% 160 mit 0% r r 285 mit 100% 010 mil 0%

Hier ist gin Reispiel fir ging Fntscheidung:

|Wann Sie in dar ersten Faile Option A wahlen, konnen Sie 2 00 Funkls mif siner Wahrschainlichkeit von 10% gewinnen Mil
| der restiichen Wahrscheinlichkeit von 0% gewinnen Sie 1.60 Punkte.

| Wienn Sie in der ersten Zeile Optlon B wahlen, konnen Sie 385 Punkte mit einer Wahrscheinlichkeit von 0% gowinnen. Mit
| der restlichen Wahrscheinlichkeit von 20% gewinnen Sia 0 10 Punkte

| Sie anlscheiden sich, indem Sie anlweder das Kaslohen bai A oder bei B markisien

| Die Cplionen unlerscheidan sich jpweilks in der Hohe der Gewinne | die Sie eraelen kinnen. Bei Oplon A kinnen Sie imimer
| entweder 2 Punkte oder 1.6 Punkte erziclen, in Option B sind die Gewinne immer eriweder 3,85 Punkte oder 0.1 Punide.

| Machste Seilte |

Figure 12. Instructions and Lottery Choices in the Holt-Laury Task I

Teil 2

| Dies Weiteren sind bei jeder Enéschaidung die Wahracheinlichkeiten auf den hohen und niedrigen Gewinn unterschiedlich
Die Wahrscheinlichkeit den hilheran Sewinn 2u erzielen, et sich mit ieder Zeile f0r Opticn A genauso wie [r Option .
Egal fir welche Option Sie sich entscheiden, Sie werden immer einen Gewinn erzieien. Sobakd Sie ale 10 Entscheidungen
| getroffen haben, klicken Sie bitte auf "CK" um forizufahren.

| Narchdem Sie lre Frischeidungen getroffien haban, wird zufalio ausoswahl welche lhrer 10 Fnischeidunogsn relsvant for die

| Auszatiung ist Im Anschiuss an diesen Teil folgt Tail 3. Am Ende das Experimants arfahien Sie dann, wie viele Punkle Sie in

| Teal 2 eagiell haben Aul dem Bildschinn werden Sise sehan, walche Enlscheidung Sie gelrollen haben. Unler den
Enlscheidungan sehan Sia noch einmal welche Entschaidung auszablungsrekvant sl ud ifve erzisllen Punkle.

Ents bexdung Ogalion A Cipliun B

1 = 00 mit 10% 1 A0 mit B ] ] 3 &5 mir 109 010 Mt pos.
2 .00 mit 20% 1.60 mit BO% L e 285 mit 20% 0.10 ma B0%
a 200 mit 30t 160 mit 0% [ r 9,85 mit 30% 040 mat FO%
1 .00 Mt 40% 1.60 ML 60% wl i 208 mit 40% 0.10 mit GO
5 = 00 mit 5% 1 A0 it 5% L] = A A5 mit 50% 0700 mat S0
[ .00 mit 60% 1.60 mit A0% 1 m 3,85 mit 0% 010 mit £0%
7 200 mit 70t 1.60 mit 30% 0 r 2.85 mit T0% 0,10 mit 50%
[ .00 mit b0t 160 it 20% r I D% M B 0.10 ma 20
a = 00 it 0% 1 AN mit 10 ] o 5 AS mit AnE 010 ma 105
10 FO0MIEI0G% 1RO mit 0% i1 (= SA5SmE100% 010 mE 0%

Dl zutallig ausgewanite Entschilmung war
I Einkammen

“Sie konnen zur ersten Seite der Erklarung durch Kiicken auf "Vorherige Seite” zurockblatiern
| Bitte: Klicken sie auf "Teil 2" um mit Teil 2 zu beginnen.

| Vorherige seite

Figure 13. Instructions and Lottery Choices in the Holt-Laury Task II
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Teil 3

Sie werden in diesem Tedl insgesamt 186 Entscheidungen treffen. Hierbel sind die ersten & Entscheidungen Praberunden
und somit nicht fur die Auszahlung relevant Danach folgen 180 Entscheidungen von denen zwei zufalig gezogene
Fntschei sind Die 180 Entscheidungen sind in 2 Blocke zu jeweils 90 Entscheidungen aufgeteitt

Bei jeder Enfscheidung haben Sie die Moglichksi! entweder Option 1 oder Option 2 wu wahien Die Oplionen unlerscheidan
sichin der Hohe der Gewlnne | dic Sic erziclen kinnen und in der Wahrsehelinlichkelt mit dor Sic die jeweiligen Gewinne
arislen

Die Wahrscheinlichkeit mil der Sie die Punkla gewinnen konnen, wird durch ginan farbigen Kreisausschnitt dargestalit
Der Gewinin wird innerhalb dieses Krei ittes durch cine Zahl k.

In dem Reispiel unien konnen bei Option 1 8 § Munkte mit einer Wahrscheinbchkait won 25% { 0000
Mit giner Wahrscheinlichkeit von 75% bringt diese Option O Punkte [ blauer Teil

EBei Optlon 2 kinnen 2.5 Punkie mit einer Wahrscheinichkeit von 75% { oranoor (o | b gewonnen werden. Mit einer
Wahrschainlichkest von 25% bringt digse Opfion 0 Punkie [ blauer Teil | Sie werden folgenden Bikdschirm sehan

=) pewonnen werden

ek e 0

HNachste Seite l

Figure 14. Instructions for Making a Lottery Decision

Teil 3

Um sich zwischen Opfion 1 und Opdion 2 zu entscheiden, mussen Sie nur den iper auf die Seite der jeweiligen Opfion
bringen und dann kickan Mit ginem Klick hahen Sie lhre Frtscheidung gefroffen und konnen diese dann nichi mehr andem
Wor jedar Enischeidung sshen Sie sin Krauz aol dem Bildschirm: Sobald dieses verschwindet erschainen die beiden Oplionen
Der Mausssiger belindel sich so diesem Zailpunkl immers in der Mille swischen den beidan Oplionen

Fir die 180 Lrtschaidungen haben Sie jewels 15 Sekunden Zait. Sollen Sie sich nicht innemal dieser Zedt entschieden
haben, erhaften Sie (I Punkte fir diese Enischeidung. Damit Sie wissen, wie viel Zeit Sie noch haben, gibt es unten auf dem
Bildschirm einen Zeitbalken, der sich fulk und nach 15 Sekunden voll ist

Wiaihrend der Proberunden erfatien Sie eine Rockmeldung fir welche Option Sie sich entschieden haben und wie viel Zeit Sie
fir Iz Entscheidung bendtigt haben. Diese Rickmeldung gibt es nur in den Probesunden.

Mach der letzien Entscheidung wird zufallig gezogen, welche Ihrer Entscheidungen fir die Auszahhing relevant sind. Hierbei wird
eine Entscheidung aus Block 1 (Entscheidungen 1 bis 90) und eine Enfscheidung aus Block 2 (Entscheidungen 91-120)
nerogen Danach gelangen Sie 7u Teil 4

Am Ende des Expariments wird lhnen in einer Tabelks angeseigl, wie wiele Punkle Sie in jeder Runde gewonnen hatlen. Das
Weilaren wird urlen aul dem Bildschinm mil der Taballe auch noch einmal gezeigl aws welcher Runde Sie Iive Punkle erhallen
und wie viele Punkte Sie insgesamt in Tell 3 erzielt kaben.

Sle kinen 2ur ersten Seite der LrkiErung durch Khcken aut “Vorenge Sede” zurlckbiittem.
Bitte klicken sie auf “Kontrolffragen” um zum nédchsten Teil 2u gelangen.

Kentrollfragen

Figure 15. Instructions for Making a Lottery Decision (No Time Costs)
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Teil 3

Um sich zenschen Option 1 und Option 2 2u entscheiden, missen Sie aur den Mauszeiger au die Seite der jeweiligen Option
bringen und dann kicken. Mit einem Klick haben Sie lhre Entscheidung getroffen und kinnen diese dann nicht menr anderm.
or jeder Entscheidung sehen Sie ein Kreuz auf dem Bildschirm. Sobald dieses verschwindet erscheinen die beiden Cptionen.
Der Mauszeiger befindet sich zu diesem Zeitpunkt immer in der Mite zwischen den beiden Optianen.

Fur die 180 Enfscheidungen haben Sie jeweils 15 Sekunden Zeit. Solten Sie sich nicht innerhal dieser Zeit entschieden
haben, etaken Sie O Punkle lir disse Lolscheldung. Damit Sie wissen, wis viel Zeil Sie noch haben, aibt es unten auf dem
Bildschimm einen Zeitbalken, der sich 00t und nach 15 Sekunden voll ist.

Zeitkonto

Dies Werteren kiinnen Sie in jeder Runde Punkie Ober Ihr Zeitkonta verdienen. 2u Beginn jeder Runde haben Sie 1.5 Punkte
auf dem 7eitkontn. Zusatzlich erhalten Sie fiir jede Sekunde, die Sie weniger als 15 Sekunden benitigen, 0.1 Punkte .
Wenn Sie sich zum Geispiel nach B Sekunden entscheiden, erhalten Sie zusatzlich zur irer Auszahlung aus der Latscheidung
1.5+ (158} 01= 1.5+ 7 0.1 = 2.2 Punkte. lhre gesamte Auszahlung In einer Runde setzt sich somit aus dem
Gewinn der Entscheidung plus den Punkten aus dem Zeithonto zusammen.

'Wenn Sie sich nichti

von 15 i betrégt lhre t 0 Punkte.

Wahrend der Proberunden erhalien Sie sine Rickmeldung 10r weiche Option Sie sich entschieden haben, wie viel Zait Sie for
Ihre Latschesdung benitiot haben und wie viele Punkle sich auf Ihrem Zetkonto befinden. Diese HOcKmeldung gibt &5 nur in den
Probarunden.

Mach der letzien Entscheidung wird zufalli gezogen, welche brer Entscheidungen fir die Auszaniung relevant sind. Hierbei wird
eing Entscheidung aus Block 1 {Entscheidungen 1 bis 90} und eine Entscheidung aus Block 2 (Entscheidungen 91-150)
nezogen Danach gelangen Sie zu Tail 4.

Am Frde des Faperiments wird lhnen in siner Tabele angereigt, wis viele Punkte Sie in jeder Runde gewonnen hatien Des
Wesiteren witd unben aul dem Bildschirm mil des Tabels auch noch enmal gessigl aus welches Runde Sie bire Punkie srthalen
urid wie viels Punkle Sie insgasaml in Ted 3 ersel haben

Sie kiinnen zur ersten Seite der Crkiirung durch Kicken auf "Vorhenge Seite” zunickblatern.
Bitie kiicken sie auf "Kontrolffragen’ um zum nachsten Teil 2u gelangen.

Figure 16. Instructions for Making a Lottery Decision (10 Cent Treatment)

Teil 3

U sich zaischen Option 1 und Option 2 2u entscheiden, missen Sie nur den Mauszeiger aut die Serte dar jeweligen Option
bringen und dann kicken. Mit einem Klick haben Sie Inre Entscheidung getroffen und kiinnen diese dann nicht menr ndem.
Wor jecer Entscheidung schen Sie ein Kreuz auf dem Bildschim. Sobald dieses verschwindet erscheinen die beiden Optionen.
Dier Mauszeiger befindet sich zu diesem Zeitpunkt immer in der Mitie zwischen den beiden Cptionen.

Fur die 180 Entscheidungen haben Sie jeweils 15 Sekunden Zsit. Sollien Sie sich nicht innerhalb dieser Zeit entschieden
haben, emalien Sie 0 Punkle [r dese Erischeidung. Damit Sie wssen, we viel Zeil Sie noch haben, gibt &5 unten aul dem
Bilgzchiom einen Zeitbalken, der sich Ik und nach 15 Sekunden voll 1St

Zeitkonto

Dies Weiteren kiinnen Sie in jeder Runde Punkte dber Ihr Zeitkento verdienan. Fir jede Sekunde, die Sle weniger als 3

Sekunden bendtigen, erhalten Sie von uns 0.3 Punkte . Wenn Sie sich zum Reispiel nach 1 § Sekunden entscheiden,
erhalten Sie zusatzlich zur ihrer Auszahlung aus der Entscheidung (3-1.5) x 0.3 = 1.5 0.3 = 0.5 Punkie. Mach Ablauf von 3

Sekunden haben Sie auf dem Zeitkonto O Puskte. Nach diesen 3 Sekunden blesbt Ihr Zeitkento bei O Punkien stehen. Thre

gesamte Auszahlung in einer Runde setzt sich somit aus dem Gewinn der Entscheidung plus den Punkten aus
dem Zeitkonto zusammen.

Wenn Sle sich nicht Ib von 15 Sek helden, betrigt lhre g 0 Punkte.

Wahrend der Proberunden erhallen Sie eing Rickmeldung lir welche Oplion Sie sich entechiaden haben, wie el Zeit Sie 1or
Ihre: Ltscheldung bendtigt haben und wie viele Punkie sich aut hrem Zeitkonto befinden. Diese ROckmekung giot es nur in den
Proberunden.

Mach der letzien Entscheidung wird zufallig gezogen, welche Ihrer Entscheidungen fir die Auszahhng relevant sind. Hierbei wird
eine Entscheidung aus Block 1 (Entscheidungen 1 bis 907 und eine Entscheidung aus Block 2 (Entscheidungen 81-130)
gezogen. Danach gefangen Sie zu Teil 4

Am Fnde des Frpariments wird lhnen in einer Tahels angersigt, wis viele Punke Sie in jeder Runde gewaonnen haften Des
Weitaren wird unfen aul dem Bildschirm mil der Taballe auch noch einmal gereigh aws welcher Runde Sie llee Punkie erfhalien
unid wie viels Punkle Sie insossaml in Teill 3 ergdell aben.

Sle kinen 2ur ersten Seite der LrkiErung durch Khcken aut “Vorenge Sede” zurlckbiittem.
Bitte klicken sie auf “Kontrolffragen” um zum nédchsten Teil 2u gelangen.

Figure 17. Instructions for Making a Lottery Decision (30 Cent Treatment)
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Teil 3

U sich zsischen Ophon 1 und Option 2 2u entscheiden, mnsgen&emden al!dleSeﬂpueu | Option
bringen und dann kicken. Mit einem Klick haben Sie e E gefroffen und ki mehr andem.
Wor jecer Entscheidung schen Sie ein Kreuz auf dem E i bald di incn die beiden Cptionen.

Dier Mauszeiger befindet sich zu diesem Zeitpunkt immer in der Mitie zwischen den beiden Ophonen

Fur die 180 Entscheidungen haben Sie jeweils 15 Sekunden 7eif. Salfen Sie sich nicht innerhalb dieser 7eit entschieden
ermalien Sie 0 Punkie r diese Erischaidung. Damit Sie wissen, wie viel Zeit Sie noch haben, gibt 25 unten auf dem
Bilcschinm einen Zeitbalken, der sich fl und nach 15 Sekunden voll ist.

Zeitkonto

Dies Weiteren kinnen Sie in jeder Runde Punkite aber Ihr Zeitkont i Fi.lrjuh dle Sle weniger als 3
Sekunden bendtigen, erhalten Sie von uns 1.0 Punkte . Wern Sie sich h1 5 heiden,
erhalten Sie ich zur ihrer aus der i [3-1.5)x 1.0 = 1.5x 1.0 = 1.5 Punkte. Nach Abfauf von 3

Sekunden haben Sie auf dem Zeitkonto O Punkte. Mach diesen 3 Sekunden bleibt Ihr Zeitkonto bei O Punkten stehen. Thre:
in giner Runde setzt sich somit aus dem Gewinn der Entscheidung plus den Punkten aus
dem Zeltkonto zusammen.

Wenn Sle sich rhalb von 16 tscheld b 0 Punkte.

Wiihrend der Probennden erfalien Sie eina Rickmealdung tdr welche Option Sie sich entschieden haben, wie vl Zeit Sia Ior
Inre Entzcheidung benditigh haben und wie viek Punkie sich auf hrem Zeitkonto befinden. Chese ROckmeldung gibt es nur in den|
Proberunden.

Mach der letzten Entscheidung wird zufallig gezogen, weich fir die redesvant sind. Hierbei wind
eine Entscheidung aus Block 1 (Entscheidungen 1 bis 90% und elne Erisr.heﬂurg aus Block 2 (Enfschei a1-180)
gezogen. Danach gelangen Sie zu Teil 4.

|Am Erde des Fxpariments wird lhnen in einer Tahels angersigt, wis viele Punkte Sie in jeder Runde gewonnen hatten Das
[ Wesilaren wird unten aul dem Bildschirm mil der Taballs auch noch sinmal gessigl aus welkcder Runde Sie hee Punkle erhalen
und wie viele Punkle Sie insgesaml in Teil 3 erziell haben.

Sie kionen zur ersten Seite der Erkirung durch Kicken auf "Vorhenge Seite” zunickblitern.
Bitte klicken sie auf “Keontrolffragen” um zum ndchsten Teil 2u gelangen.

[Fmencs s

Figure 18. Instructions for Making a Lottery Decision (100 Cent Treatment)

Vertielhends 7et [sec] S

Figure 19. Screen of Lottery Decision from the Lottery Sample (Same for All Treatments)
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Beispiel 1

Erkldrung

el 2us einem Muster, aus dem
ein Tail ausgeschnillan st achler £
Muster, und dberlagan Sie, wie das aussehen muss,
it dem das Muster sowohl in waagerachier und
senkrechier Richiung korrekt venvalstindigt werden
kann.

Suchen Sie nun aws den 8 unterhal angeordneten
Wahiméglichkeiten die karrekie heraus. Sie wahlen
eine der & Moghchkeiten, indem Sie auf diese
klicken. Ein groner Rarmen zeigt das von Ihnen
Feld an.

Kickan Sie auf Erklarung 1 um weilar zu machen
Hier wird Ihnen erkir, wie man auf die richbige

Lasung komimen kann
1 2 3 4
5 6 7 8
) )
Figure 20. Raven Test Instructions
‘erblebends Zeft [sec] 475
Entscheidung 2
1 4 6 0 8 0
2 0 6 0 10 0
30 7T 0 1 0
4 0 8 0 12 0

Zur Erinnerung: Die rate 7ahl rechis neben der
schwarzen Zahl z2igt an, wie Sie sich entschieden

naben. Eine U bedeutet, dass Sie bei dieser Aufgabe
noch nichts gewdhk haben. Zum Navigicren benuzen
Sie die Buttons "Vorhenge Aufgabe und “Machste
Aufgabe”.
2 3
-}

H bt
#
4 4

7
——

| 1

| rige mgaul Hichste Aufgabe

Figure 21. Raven Test — Easy Task (Task 2 out of 12)
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verblelbende Telt [sac]

Entscheidung 11

.I.
o'o
O @
4
\1./

1 4 5 6 9 7
2 T 65 7 10 6
37 T 8 1 8
4 6 5 4 12 0

Zur Erinnerung: Die role Fabl rechis neben dar
schwarzen Zahl zeigt an, wie Sie sich entschieden
haben. Eine [ bedeutet, dass Sie bel dieser Aufgabe
nech nichis gewahlt haben. Zum Mavigieren benutzen
Sie die Buttons "Vorherige Aufgabe” und "Nachste
Alfgabe”

+)
) o] i)
Ve [

Figure 22. Raven Test — Hard Task (Task 11 out of 12)

Geschlecht

Aler

Studisnrichiing (Fakulta Haupttach)

Wurden Sie In Deutschiand geboreny?
=nd Sle Furrelt ereerhatig?

‘Wiesiel Gekd haben Sle monallich ca_zur Vergung
(abzilglich Kosten for Wohnung und Krankenkasse)?

Welzhen Kotenschnit hztten Sie Im Azitur?
(1= schrgut, 2 = gut, 5= 4=

3 gend, 6=
(Bille erselzen Sie bei der Eingabe das Komma durch einen Punkly
Welche Schumote stehl in Ihrem Abilurzeuges im Fach Deulsch?

Wekhe Schumnole stehl in lhrem Abilurzeugies im Fach Malbemabk?

Wi gul sing Sie mil dem Konzegd des Ervarlungsae s verlraul?

Wie sehr sind Sie an Politik interessien?

In der Pollk reden die Leute oft von "links” wnd “rechts”,

Wenn €5 darum gent unterschisdliche poltische Enstsllungen 2u kennzeichnen.

Wenn S an e egenen polilischen Ansichien denken.
Wo wirden Sie diese Ansichten einstufen?

e Kinnen sich auf meine Angahen veriassen

Weiblch © Mannich

Gelsteswissensehaft
Ingenieurwissenscharl
Medizn
Maturwssenschart
Rechiswissenscharn
Wirtschafiswissenschaft
SoFiaissenschaft
andere

T e s |

b s s i |

il

1a  nen

CJa © nen

garnicht © © © © ¢ © volslandg

iiberhaupt nicht inferessiert
nichi sehr nberessiert
ehwas inleressierl

sehr inferssert

T e i |

links © © © C  rechts

voll « ¢ ¢ ¢ ¢ garnicht

Figure 23. Questionnaire on Socio-economic Characteristics
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