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ically relevant situations. Yet, Nash-equilibrium, and alternative theories that

have been proposed in the literature, notoriously fail to explain observed behav-

ior in these games. This paper proposes a bounded-rationality approach in which

players lexicographically employ team reasoning, choose ‘lucky numbers’ (the

choice they would pick in a lottery), and randomise uniformly. This three-step

procedure is able to organise the data across many different frames for coordi-

nation, discoordination, and hide-and-seek games. Moreover, it predicts three

general regularities that bear out on the existing data and additional data from a
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1 Introduction

Alternatives in real-life situations are hardly ever non-descript, but usually have

non-neutral labels attached to them and often have a spatial ordering. When

driving from one city to another, we may choose between “the long but pretty

route” and “the short but boring route” or between the “northern” and the “south-

ern route”, but we rarely choose between “option 1” and “option 2”. This paper

starts from the observation that such non-neutral decision frames have an in-

fluence on behaviour that often seems to be as important as the incentive struc-

ture behind these frames. In particular, the paper sets out to understand the

strategic behaviour of participants in a variety of games played on such non-

neutral frames. Some of these games have been at the heart of game theory for

decades, such as (dis-)coordination games and matching-pennies games. In con-

trast, Schelling’s (1960) account of how an action’s non-payoff-related character-

istics may influence behaviour has re-entered the academic debate only rather re-

cently. I elicit experiment participants’ ‘lucky numbers’—the options they would

pick in a lottery—and feed them into a simplistic strategic-choice heuristic. This

heuristic fits the data better than any of the models discussed in the literature,

and at least as well as a number of new alternative models that all have higher

degrees of freedom. It predicts three general regularities that accurately describe

data patterns of existing and new data. As one implication of one of the regu-

larities, the heuristic explains the consistent seeker-advantage in hide-and-seek

games (e.g., Rubinstein et al., 1997).

The data I look at comes from the general class of “strategy-isomorphic games”

(Hargreaves Heap et al., 2014): in these games, the strategies are indistinguish-

able once we remove the labels of players’ strategies. The games I use all have

two players and four actions. All games were played under at least eight differ-

ent label frames such as (“1”, “2”, “3”, “4”), (“A”, “B”, “A”, “A”), or (“hate”, “detest”,

“love”, “dislike”). I look at coordination games, in which the players win a prize

if they choose the same action; discoordination games, in which the players win

a prize when they choose different actions; and hide-and-seek games (multiple-

action matching-pennies games), in which the hiders wins the prize if the seeker

chooses a different action and the seeker obtains the prize when choosing the
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same action as the hider.

These games capture elements of many important situations in every-day

life: when a mother and her child lose each other in the middle of a city (an obvi-

ous coordination game), when two firms simultaneously decide on market entry

in two markets (potentially a discoordination game), or in military, police, and

intelligence work (hide-and-seek games), just to name some examples. Under-

standing how non-payoff-related characteristics of the available options affect

behaviour is important, because as I pointed out above, most every-day-life sit-

uations carry non-neutral frames: in the example of the mother and her child,

“the place where they last talked to each other” may be more salient than “the

next street to the right”. Or, in armed conflicts, gaining control over historically

important places may be of particular importance to the parties even if it does

not help winning the war.

My research strategy has two parts. One is to propose a new desciptive

theory—my simple heuristic—and to derive some general implications from the

theory that I can use as testable ex-ante hypotheses. To do so, I enlarge the set of

games by adding a Colonel-Blotto game and a new game I call the ‘to-your-right

game’. In the ‘to-your-right game’, a player wins a prize if she chooses the action

immediately to the right of her opponent’s choice (in a circular fashion, so that

the left-most action wins against the right-most action). The game is not meant

to have any direct parallel to every-day life but is similar to the well-known

rock-paper-scissors game. In the Colonel-Blotto variant I use, players have to

allocate up to 40 troops to the four locations; whoever has more troops on the

location wins it, and whoever wins more locations wins the game (with random

tie-breaking). Inter alia, Blotto games have been used to model allocations of

funds towards different voter groups in electoral campaigns.1

The other part of my research strategy is to compare the heuristic to sensi-

ble benchmark models and to show that the simple heuristic provides at least

as much guidance in understanding the data as the alternative models that have

more free parameters. Even if we do not like the bounded-rationality idea and

disregard the complete heuristic as a behavioural model, this paper strongly

shows the explanatory power of ‘lucky numbers’ for behaviour across the games.

1E.g., Groseclose and Snyder (1996).
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At the same time, I show that we cannot anchor simply any behavioural model

in ‘lucky numbers’ and expect a satisfactory explanation for the data: doing so

for a level-k model does not strongly outperform the heuristic on hide-and-seek

data and performs clearly worse in coordination and discoordination games.

This paper proposes the following three-step heuristic of strategic behaviour:

(i) start by team reasoning (Sugden, 1993, 1995).2 If team reasoning yields no pre-

scription other than random choice, (ii) choose your ‘lucky number’ (the choice

youwould pick in a lottery on the given frame). With a certain probability, recon-

sider whether this is sensible if others pick ‘lucky numbers’, too, assuming peo-

ple’s ‘lucky numbers’ are correlated. If it is not, (iii) make a uniformly-random

choice. This heuristic takes as primitives the data from two experimental tasks:

a lottery, in which participants select an option and win a prize if nature picks

the same option afterwards (the BettingTask), and a salience-rating task (for

the team-reasoning part, which is going to be relevant only in the coordina-

tion game). For games in which players go beyond the team-reasoning step, the

heuristic yields three implications: (i) the qualitative distribution of choices for

a given frame should follow the qualitative distribution of ‘lucky numbers’, ir-

respective of the game and player role (in hide-and-seek games, this implies the

consistent seeker advantage referred to above); (ii) the prevalence of uniform

choices should be lower for seekers in the hide-and-seek game than for any of

the other player roles, because seekers are the only players for whom it is sensible

to choose anything others (i.e., hiders) would choose, too; and (iii) the correla-

tion of ‘lucky-number’ pattern and choice pattern in a game should increase in

the strength of the ‘lucky-number’ pattern.

These rather strong implications bear out surprisingly well. In contrast, the

models discussed in the literature provide little guidance. Running experiments

on some of the above games, Rubinstein et al. (1997) show that participants’ be-

haviour deviates systematically from the unique Nash-equilibrium (uniform ran-

domisation).3 To take a prominent example, in a hide-and-seek game played on

(“A”, “B”, “A”, “A”), there is a clear mode on the ‘central A’ that is even more pro-

2Roughly, team-reasoners ask themselves: “what decision rule, when followed by all players,
would yield the best outcome,” while agents in standard game theory ask: “what is the best I can
do, given what everybody else will do (when confronted with the same question)?”

3P. 402; see also Rubinstein and Tversky (1993) and Rubinstein (1999).
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nounced for seekers than for hiders. Uniform randomisation is also the quantal-

response equilibrium given that strategies are not distinguishable by their pay-

offs. Finally, level-k or cognitive-hierarchymodels yield the same solution if they

rely on a uniformly-mixing level-0.

There is only a single model in the literature that accounts for some of Ru-

binstein et al.’s data. In an important contribution, Crawford and Iriberri (2007)

show that a level-k variant based on salience as level-0 can account for hide-

and-seek data from a number of frames (notably, “A”, “B”, “A”, “A”). However,

Hargreaves Heap et al. (2014) argue that, had Crawford and Iriberri (2007) used

all available games for the frames Crawford and Iriberri use, the model’s ex-

planatory power would have been small. In Wolff (2016), I use the central frame

from Crawford and Iriberri (2007) and elicit salience in nine different ways. The

elicited salience patterns all tend to be similar, but they do not allow to account

for the data when used as level-0.

Given the existing models explain only a subset of the available data at most,

I set up a number of alternative benchmark models. To do so, I use plausible

variations of existing models, in addition to the Nash-prediction and a salience-

based level-k variant à la Crawford and Iriberri (2007). None of these models

outperfoms the heuristic consistently, despite all (but Nash-equilibrium) having

a larger number of free parameters.

2 The data

I use data of several papers on behaviour in games where actions are not dis-

tinguishable by their payoffs. All of the games are two-player games played on

frames that have four locations each. The left-hand column of Table 1 provides

an overview of the frames. I use all frames presented by Rubinstein and Tver-

sky (1993) and Rubinstein et al. (1997), plus two obvious complements, baaa and

aaab, as well as the Ace-2-3-Joker frame introduced by O’Neill (1987) and also

referred to in Crawford and Iriberri (2007).

It can be argued that including all of Rubinstein et al.’s frames distorts the

analysis because some of these frames use labels with positive or negative con-

notations. Therefore, choosing the associated actions may increase or decrease
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utility on top of the utility associated with the resulting monetary outcome. I

nevertheless include all of Rubinstein et al.’s frames, for three reasons: (i) in my

view, understanding behaviour in non-neutral landscapes extends beyond ‘neu-

tral non-neutral’ landscapes (and it would be difficult to draw the line if we accept

the idea that people tend to have lucky numbers); (ii) at least the heuristic and

the LuckyNoEqm Nash-equilibrium variant described below are meant to apply

also under ‘truly non-neutral’ frames (much like the Nash-equilibrium with pay-

off perturbations considered in Crawford and Iriberri, 2007); and (iii) excluding

frames with clearly positive or negative connotations in our sample does not

change the results meaningfully but leaves us with less statistical power for the

analysis.4

Table 1 presents the origin of the data I use in this study, together with the

number of observations (in parentheses). The data for the coordination and hide-

and-seek games mostly comes from Rubinstein and Tversky’s (1993) and Rubin-

stein et al.’s (1997) studies, only for the abaa frame, I have additional observa-

tions from other studies for each game. For the discoordination games, Rubin-

stein et al. (1997) only have data for six of the frames. I complement this with

data on a different subset of six frames collected for two studies run by Dominik

Bauer and myself. Finally, I collected the data for the to-your-right and Blotto

games specifically for this study, to see whether the predictions and model im-

plications also apply to a new setting. A complete listing of all the data I use—old

and new—can be found in Appendix A.

I ran the to-your-right and Blotto games as the first part of (different) sessions

comprised of three parts, where I described each part only as it started. Only one

part was paid. If the first part was payoff relevant, the roll of a die selected one

of the to-your-right games (or Blotto games, in the Blotto sessions) for payment.

Participants played under all eleven frames with a randomised order, random

rematching, and without feedback between games. I described the to-your-right

game as follows:

4Appendix C presents the main tables from the data analysis for the reduced sample. Most
importantly, the heuristic still has the lowest mean squared error for coordination and discoor-
dination games, and the second-lowest mean squared error in the hide-and-seek games; at the
same time, the best-performing model for hide-and-seek games is among the worst-performing
models for the other games.
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Frame Coordination Discoordination Hiders Seekers To-your-right Blotto

RTH RTH RTH RTH new new
(50) (49) (53) (62) (110) (94)

polite-rude-honest- RTH RTH RTH RTH new new
-friendly (50) (49) (53) (62) (110) (94)

RTH RTH RTH RTH new new
(50) (49) (53) (62) (110) (94)

abaa RTH+W RTH+BW+B RTH+HW+W RTH+HW+W new new
(122) (442) (339) (281) (110) (94)

RTH RTH RTH RTH new new
(50) (49) (53) (62) (110) (94)

hate-detest-love-dislike RTH RTH RTH RTH new new
(50) (49) (53) (62) (110) (94)

1-2-3-4 RT BW+B RT RT new new
(184)† (292) (187) (84) (110) (94)

aaba RT BW+B RT RT new new
(185)† (292) (189) (85) (110) (94)

Ace-2-3-Joker BW+B new new
(292) (110) (94)

baaa BW+B new new
(292) (110) (94)

aaab BW+B new new
(292) (110) (94)

†Pooled from the “Chooser” and “Guesser” framings. RTH: Rubinstein et al. (1997). RT: Rubinstein and Tversky (1993).

HW: Heinrich and Wolff (2012). B: Bauer (2016). BW: Bauer and Wolff (2016). W: Wolff (2015).

Table 1: Origin of the data I use (numbers of observations in parentheses).

There are four boxes. You and the other participant choose a box

without knowing the decision of the respective other. One of you

can obtain a prize of 12 Euros. Who wins depends on the relative

position of the two chosen boxes. The participant wins whose box

lies to the inmediate right of the box of the other participant. If a

participant chooses the right-most box, then the other participant

wins if he chooses the left-most box. Who does not win obtains a

consolation prize of 4 Euros. Of course, it is possible that neither

you nor the other participant wins.5

5Similarly, the instructions for the Blotto game read: There are four fields. You and the other
participant have to assign 40 units to the four fields without knowing the decision of the respec-
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Participants had not participated in any other experiments using the same

type of non-neutral frames.6

To informmy heuristic and some of the other models I use on the game data, I

collected data from additional tasks in separate sessions. First, I conducted seven

sessions with a total of 140 participants that had a BettingTask as the first of

several parts (following the same procedures as with the to-your-right and Blotto

games). In the BettingTask, participants faced the following task:

In each decision situation you have to choose one out of several

boxes. Subsequently, one of the boxes will be randomly selected by

the cast of a die. In case the randomly-selected box coincides with

the box you chose, you receive 12 Euros. If the two boxes do not

coincide, you receive 4 Euros.

Next, I conducted three sessions with a total of 58 participants of a HiderBet-

tingTask. This task differs from the BettingTask only in that participants

receive the bigger prize if their choice does not coincide with the randomly-

selected box. Finally, I asked 96 participants to rate the options’ optic salience

(SalienceRating) and 102 participants to rate howwell each of the boxes within

a frame represented all four boxes within that frame (RepresentRating).7 In

both tasks, participants saw the boxes in the same horizontal line-up as in the

other tasks. Below each box, they would have a slider (empty at the outset) to

indicate the level of optical salience (between “extremely conspicuous”, top, and

“extremely nondescript”, bottom) or representativeness (between “totally repre-

sentative”, top, and “not representative at all”, bottom).

tive other. One of you can obtain a prize of 12 Euros. Who wins depends on how many fields
you can win. The participant who has placed more units on a field wins the field. The participant
who wins most fields overall wins the prize of 12 Euros. The other participant obtains a consola-
tion prize of 4 Euros. If both participants win the same number of fields, chance determines who
obtains which prize.

6I used z-Tree (Fischbacher, 2007) and orsee (Greiner, 2015).
7The rating taskswere included inBettingTask andHiderBettingTask sessions. One could

argue that this procedure could bias the rating-task data. However, in particular the SalienceR-
ating data has so little variance and corresponds so well with intuition, that I see little value in
repeating the task in separate sessions. The RepresentRating data has more variance, but I do
not use it to inform any of the models in Section 3.
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3 Theheuristic, implications, and the alternatives

This section presents the models I use in the paper. Because there are no ‘stan-

dard’ alternatives available that would come close to explaining the data, I con-

struct two ‘sensible’ level-k alternatives to compare to. I also include the salience-

based level-k of Crawford and Iriberri (2007), with an empirically-defined level-0.

Finally, I include an equilibrium with payoff-perturbations that are informed by

the BettingTask choices.

TeamLuckyUniform. The three-step procedure I propose in this paper, by

which players use the following algorithm to arrive at their decision:

1. start by team reasoning: what decision rule, when followed by all players,

would yield the best outcome? If you find such a rule (other than ‘pick

randomly’), choose the according action and end here. If not,

2. choose your ‘lucky number’. This is the choice you would pick in a lottery.

With a certain probability p, end here. With the complementary probabil-

ity, reconsider whether this is a best-response if others pick ‘lucky num-

bers’, too, assuming that ‘lucky numbers’ are correlated between players.

If so, stick to your choice and end here. If not,

3. fall back on step 1 and make a uniformly-random choice.

This heuristic is an abbreviation of the following train of thought that players

approaching a new situation may be following: “is there any obvious best option

for me (step 0a, left out above; it would mean checking for obvious dominance)?

If not, is it clear what the other player will do (step 0b, also left out above; checks

for obvious dominance for the other player)? If so, react correspondingly, if not,

do we both want the same? If so, what do we have to do to make the best out of it

(step 1)? If not, that is, if I still don’t know what to do, I’ll just pick what sounds

best to me from among the options I have (step 2). Ah, wait, maybe I shouldn’t

do that if the other player does the same, should I (step 2b)? In that case, I’ll

just choose anything (else).” In the formulation of the heuristic, I am leaving out

steps 0a and 0b because dominance is ruled out in the class of games I look at.
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Step 1 simply follows team reasoning. I refer the interested reader to Sugden

(1995) for a formal treatment and treat this step only in passing, because themain

focus of the paper are those games in which team reasoning does not have any

prescription to offer other than to pick a random decision rule. Team reasoning

requires a choice between decision rules. In themodel of Sugden (1995), these de-

cision rules are constructed in a hypothetical state before the labels are assigned

to strategies. Decision rules could be “choose the smallest number”, “choose your

favourite colour”, “choose the item standing out the most”, or “choose the most

representative item”. The predicted decision rule should then be unique in being

collectively optimal. Empirical studies like Mehta et al. (1994) and Bardsley et al.

(2010) have shown that in coordination games as the ones employed here, label

salience generally seems to be the principle participants rely on.8 Therefore, for

the frames I use, I predict that participants will always coordinate on the most

salient option. Because I do not want to rely on intuition on what is the most

salient label in a frame, I use the SalienceRating data as input into the model.

The TeamLuckyUniform prediction for Rubinstein et al.’s coordination-game

data is therefore equal to the fraction of participants who rate the corresponding

label highest in terms of salience.9

In the train of thought I described, the final step is either to “choose anything”

or to “choose anything else” if choosing your lucky number is suboptimal when

the other player chooses the same number. These two variants are different in

whether they exclude the lucky number. However, the two formulations are

equivalent because they will merely imply a different probability p. I chose to

use randomisation over all actions in the heuristic because as game-theorists,

we are used to thinking of uninformed choice as of uniform randomisation over

all actions.

As I stated above, the heuristic predicts coordinators to choose by what they

8Important note: I do not intend to say that the above studies find that “participants choose
according to salience”. The studies only suggest that for frames like the ones I use, “choose the
item standing out the most” happens to be the decision rule that most participants see as being
unique in being collectively optimal.

9Sugden (1995) shows that the optimal decision rule maximises variance in choice probabil-
ities. This empirically corresponds to the fact that the SalienceRating data has a very high
variance (is very concentrated on single items), which in all but one case is higher than the vari-
ance of the alternatives considered in this paper (RepresentRating and ‘lucky numbers’).
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see as the most salient label. Discoordinators will not find a better decision rule

than to pick randomly. Therefore, they proceed to step 2, and, with probability

p, also to step 3, because discoordinators do not want to choose the same items

and ‘lucky numbers’ will be correlated. Hence, they will choose ‘lucky numbers’

with probability (1 − p), and uniformly-random with probability p. The same

prediction applies to hiders and to players in the ‘to your right’ game. To test the

heuristic against data from the Colonel-Blotto game, we have to adapt its lucky-

number step slightly as meaning that people deploy their resources according

to the ‘lucky-numberedness’ of the options.10 Again, a fraction p of Blotto play-

ers will conclude that playing ‘lucky numbers’ is not a best-response to others

playing lucky numbers, and proceed to uniform randomisation. Only seekers

should stop after step 2: a seeker is happy to stick to her choice when think-

ing that the hider is likely to choose the same. These predictions mean that for

games that are not ‘team-reasoning solvable’, the TeamLuckyUniform heuristic

has two general implications:

invariance the qualitative distribution of choices for a given frame follow the quali-

tative distribution of ‘lucky numbers’, irrespective of the game; here, the

“qualitative distribution” refers to which items are chosen the most often,

the second-most often, etc.; and

U-differential the prevalence of uniform choices is lowest for seekers in the hide-and-

seek game. Hiders, discoordinators, and ‘to-your-righters’ rely on ‘lucky

numbers’ to the same degree.

Because ‘lucky numbers’ will not be the same for everybody, sampling partici-

pants into the experiment will introduce randomness in the aggregate data. This

may change the qualitative choice pattern when the ‘lucky-number’ pattern is

weak, but it should rarely do so when the pattern is strong. Hence, we obtain a

third implication:

10It is unclear whether the ‘lucky-numberedness’ of an option can be measured by the fraction
of people choosing it as their most lucky number. In principle, it seems more sensible to elicit
participants’ individual lucky-number orderings over all locations (e.g., in a conditional betting
task, in which participants have to specify what they bet on if their most-preferred option is not
available) and then define the lucky-numberedness of the options by the resulting distribution of
lucky-number orderings. Given we do not have this data, the best we can do is to assume both
orderings will be correlated and to use the data we have.
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predict-differential theTeamLuckyUniform heuristic accounts for the qualitative data pattern

the better, the stronger the ‘lucky-number’ pattern is.

Salience-Lk. Crawford and Iriberri’s (2007) level-k model in which level-0

follows salience, and level-k players with k > 0 play a best-response to level-

(k − 1) players. Rather than making assumptions about what is salient, I use

data from the SalienceRating task as the level-0 to base the model on.11 For

example, consider a discoordination game played on abaa. The first a is held to

be the most salient location by 2% of all SalienceRating participants, b by 91%,

and the two other as by 4% each. Therefore, we would expect level-0 to choose

with probabilities (0.02, 0.91, 0.04, 0.04), uneven levels to choose the first a, and

even levels to randomise between the other three locations.

Betting-Lk. This level-k model uses as level-0 the data from the Betting-

Task. In level-k theories, level-0 is supposed to be people’s intuitive reaction to

the game, which may well coincide with the choice they make in a lottery. In

the abaa-discoordination-game example, betting proportions—and hence, level-

0 choices—are 13%, 33%, 41%, and 13%, uneven levels randomise between the end

as and even levels between the two locations in the middle.

Bounded Lk. This model differs from standard level-k with a uniformly ran-

domising level-0 only in terms of level-1. It incorporates that level-1 players

may respond to uniform randomisation by non-uniform randomisation (or by

not randomising at all). The BettingTask and HiderBettingTask elicit what

participants do when facing uniform randomisation. Level-1 coordinators and

level-1 seekers will act like participants in the BettingTask, whereas level-1 dis-

coordinators and level-1 hiders will act like participants in the HiderBetting-

Task. For abaa, theHiderBettingTask choice frequencies are 9%, 53%, 21%, and

17%. Therefore, in our discoordination-game example, level-0 would randomise

uniformly, level-1 would choose with probabilities (0.09, 0.53, 0.21, 0.17), even

11I use the distribution of locations that participants ranked as most salient, to obtain a metric
that is comparable to the data from the BettingTask. Using the average salience rating for each
location does not change the results in any significant way.
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levels would choose the first a, and uneven levels of level-3 or higher would

randomise uniformly among all locations but the first a.

NashEqm. The unique symmetric mixed-strategy equilibrium that has both

players randomise uniformly over all locations.

LuckyNoEqm. A Nash-equilibrium variant in which participants derive ex-

tra utility from choosing certain locations (cf. Crawford and Iriberri, 2007). For

this model, I interpret the BettingTask data as a measure of participants’ in-

herent preferences for the different locations.12 I compute utility values from

the BettingTask data and re-define the game in terms of these utility values: A

multinomial-logit utility model estimated by maximum likelihood yields utility

values that I transform in an affine-linear way (to obtain positive utility values).

Then, I calculate the mixed-strategy equilibria for the games that result when the

non-zero entries in the standard game matrix are replaced by the transformed

utility values. Finally, I use another layer of maximum-likelihood estimation to

obtain the transformation of utility values and probability of trembles by play-

ers that yield the best-possible fit to the data. Note that the transformation of

utility values does not affect BettingTask choice under the multinomial-logit

model, but it does affect the calculated mixed-strategy equilibria. For our abaa

example, (absolute) choice frequencies in the BettingTask were 18, 46, 58, and

18. If these frequencies are the result of a multinomial-logit choice process, the

maximum-likelihood estimates for utilities are -0.52, 0.42, 0.65, and -0.52. I re-

calibrate those utilities to 0.65, 1.27, 1.43, and 0.65 (which are still in accordance

with the BettingTask choice frequencies) and use the recalibrated values as the

corresponding entries in the normal form game: when a participant chooses one

of the end-as and her opponent chooses another location, the participant’s utility

will be 0.65. Likewise, when she successfully discoordinates by choosing b, her

utility will be 1.27. Using the resulting normal-form game, the unique symmetric

equilibrium (mixed) strategy would be (0, 0.47, 0.53, 0). As I point out above, I

allow for errors and allow the maximum-likelihood procedure to optimise over

12Of course, this assumes that people are homogeneous in what utilities they derive from the
different locations. This is a strong assumption, but it is the best approximation that I have.
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another layer of utility-recalibration for the model comparison in part 4.1.

4 Results

4.1 Accounting for behaviour

The coordination-game data is explained best by participants choosingwhat they

see as the most salient option. The top part of Table 2 shows that this is in

accordance with the TeamLuckyUniform and Salience-Lk models but not with

Betting-Lk or Bounded-Lk (I omit the Nash-equilibrium and the LuckyNoEqm

models here as they do not make a unique prediction). Having said this, I focus

on the games that are not ‘team-reasoning-solvable’ (i.e., where team reasoning

only predicts uniform randomisation) for the remainder of this paper.

Result 1. The simplistic TeamLuckyUniform heuristic fits the data at least as

well as any of the other models, with fewer parameters than the level-k and

LuckyNoEqm alternatives.

Looking at the middle part of Table 2, the TeamLuckyUniform model ex-

hibits the largest log-likelihood of the models when fitted on discoordination-

game data.13 It is outperformed in terms of the mean squared error (MSE) by

Salience-Lk and LuckyNoEqm, and in terms of both the MSE and the number

of choice-distribution modes correctly fitted by Bounded Lk. However, each of

these four models performs clearly worse than TeamLuckyUniformwhen fitted

on hide-and-seek data, as the lower part of Table 2 shows. Here, Betting-Lk—

which TeamLuckyUniform outperformed clearly in the upper half of Table 2—

takes on the role of the main contender, with higher log-likelihood, lower MSE

but less correctly-fitted modes. So, while TeamLuckyUniform does not domi-

nate any of the other models, it always performs best on at least one criterion,

and it does so using only one free parameter as opposed to three (for the dis-

coordination data) or five (for the hide-and-seek data) as in the level-k models.

13To fit the models, I calculate the predicted marginal probabilities as a function of the model
parameters (for level-k models, the level distribution, for TeamLuckyUniform, the ‘re-thinking
probability’ p). Using those marginal probabilities, I calculate the likelihood of the observed
samples. The maximum-likelihood algorithm then optimises over the parameter values. Unless
otherwise indicated, I do not include trembles in the models.
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4 RESULTS 15

model fitted on LogL MSE modes predicted parameters

Betting-Lk coordination -951 0.6415 3 out of 8 2

Bounded Lk -945 0.0635 3 out of 8 3

Salience-Lk -885 0.0154 8 out of 8 2

TeamLuckyUniform† -885 0.0154 8 out of 8 0

Betting-Lk discoordination -2980 0.0056 5 out of 11 3

NashEqm -2975 0.0045 2.75‡ out of 11 —

Salience-Lk -2972 0.0039 6 out of 11 3

Bounded Lk -2967 0.0034 7 out of 11 3

LuckyNoEqm -2960 0.0038 6 out of 11 3

TeamLuckyUniform -2959 0.0039 6 out of 11 1

NashEqm hide & seek -2412 0.0160 (2,2)‡ out of (8,8) —

LuckyNoEqm -2361 0.0116 (0,8) out of (8,8) 3

Salience-Lk -2356 0.0126 (2,6) out of (8,8) 5

Bounded Lk -2340 0.0089 (5,6) out of (8,8) 5

TeamLuckyUniform -2316 0.0076 (8,8) out of (8,8) 1

Betting-Lk -2299 0.0066 (8,6) out of (8,8) 5

†Model includes a tremble with 1% probability to take care of zero-probability events. The fit improves further when

allowing for more randomisation. ‡Expected number of correctly-predicted modes under uniform randomisation.

Table 2: Performance of the models in terms of data fitting, ordered by log-

likelihood.



Spearman coefficient p−value

hiders 0.63 0.000

seekers 0.60 0.001

discoordinators 0.24 0.122

to-your-right players 0.50 0.001

Blotto players 0.41 0.007

Table 3: Correlations of ranks: game data and BettingTask data.

As further suggestive evidence, the fitted Bounded Lk has virtually only levels

0 (uniform randomisation) and 1 (BettingTask/HiderBettingTask), no matter

which game the model is fitted on (a combined 100% if fitted on discoordination,

88% if fitted on hide and seek).

4.2 The invariance implication

The TeamLuckyUniform heuristic predicts that the qualitative data pattern in

all games will be the same as that of the corresponding BettingTask. Looking at

the modes as a first, crude measure, this prediction seems to hold for hiders and

seekers (16 out of 16 modes correctly predicted), and to a lesser degree also for

to-your-right players (8 out of 11), discoordinators and Blotto players (both times

6 out of 11).14 While the modes are interesting, the invariance implication speaks

about the complete distribution. Table 3 presents the Spearman correlations of

ranks between the game data and the BettingTask data for each of the player

roles.

Result 2. Invariance tends to hold: the correlation of ranks between the game

data and the BettingTask data is strong and significant for hiders, seekers, to-

your-right players, and Blotto players, and still sizable for discoordinators.

As Table 3 shows, the correlation of ranks between the game data and the

BettingTask data is 0.63 for hiders, 0.60 for seekers, 0.50 for to-your-right play-

14There is nothing systematic to be learnt from the deviations: the frames on which the dif-
ferent games deviate from the prediction overlap only partially, and when they do, the modes
coincide in only 2 out of 5 cases.
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ers, and 0.41 for Blotto players (all p < 0.007). The rank correlation for dis-

coordinators is 0.24 (p = 0.122). At the same time, all predictions are clearly

better than the predictions made by random choice. To see that, I calculate the

mean squared difference in ranks between the game data and the BettingTask

data, and compare this difference to the difference to be expected under ran-

dom choice. To compare the mean squared rank differences to the BettingTask

with that to the random-choice benchmark, I draw for each frame 100’000 sets

of 110 draws from a uniform distribution over four items and convert the sets to

rankings.15 I then compare the mean squared rank difference between the game

data and the BettingTask to the distribution of mean squared rank differences

from the simulation, by means of a Kolmogorov-Smirnov test (bootstrapped to

correct for the discreteness of the rankings). The corresponding p-values are all

p ≤ 0.042.16

4.3 U-differential

The TeamLuckyUniform heuristic predicts that seekers should be relying on

‘lucky numbers’ the most, and on uniform randomisation the least. The heuris-

tic does not distinguish between the degrees to which hiders, discoordinators,

and players of the to-your-right game should rely on ‘lucky numbers’. To test

the U-differential implication, I fit the heuristic separately on hiders, seekers,

discoordinators, and to-your-right players, and report the fitted prevalence of

uniform randomisation for each of them in Table 4.

Result 3. U-differential holds partially: while seekers are clearly the least likely

to mix uniformly, there also is a difference among the other player roles.

Table 4 clearly shows that seekers are the least likely tomix uniformly. Whether

there is a difference between the other player roles is unclear at first sight: they

may all have a propensity to randomise of around 70%, but there also seems to

15I chose 110 draws to match the median number of observations in my data set.
16Another way of looking at the question is to locate the median mean squared rank difference

of a game with the BettingTask data within the simulated distribution of differences to random
play. Here, we note that the median mean squared rank difference over all frames is always
between 0.7 and 1.3 of a standard deviation (of the simulated random-play distribution) lower
than the median of the simulated distribution.
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fitted prob(uniform mixing) in %

seekers 23

hiders 55

discoordinators 70

to-your-right players 85

Blotto players 91

Table 4: Fitted probability of uniform mixing for each player role.

be a clear difference between hiders and to-your-right/Blotto players that the

heuristic does not account for. Likelihood-ratio tests reveal that all of the differ-

ences reported in Table 4 are significant (with p ≤ 0.021), except for the differ-

ence between to-your-right and Blotto players (p = 0.485).17

I presented the model as implying that there should not be any difference

among the non-seekers. However, there may be a model-inherent reason for a

difference between discoordinators and hiders in terms of how much players in

these roles should rely on ‘lucky numbers’. Discoordinators may spend some

time in the team-reasoning step one of the model, trying to figure out a good de-

cision rule. This would imply they are thinking about the other player for some

time. From there, it is only a small step to reconsider a second-step lucky-number

choice, potentially because the players might have considered picking ‘lucky

numbers’ as a team-reasoning decision rule. Hiders, on the other hand, will go

through the team-reasoning stage very quickly, so that their opponent may not

be as present in their mind. This, of course, does not explain the even higher

prevalence of uniform mixing amongst to-your-right and Blotto players, unless

the game description prompts them to think about the other player straight away.

In any case, the heuristic offers no obvious reason for discoordinators to use less

uniform mixing than to-your-right or Blotto players.

17To obtain these p-values, I runmaximum likelihood estimates for each role with the probabil-
ity of uniform mixing being constrained to each of the other estimates. The Likelihood-ratio test
then compares the maximum likelihood of the constrained and the unconstrained estimations.
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4.4 Predict-differential

In the preceding two sections, I presented evidence that the two implications

invariance and U-differential offer considerable guidance in understanding be-

haviour. Yet, none of the two implications holds perfectly. As also implied by the

heuristic under random sampling of participants, we can use information from

the BettingTask data to identify the frames in which the heuristic fits better.

Result 4. There is a positive correlation between the predictive accuracy of the

TeamLuckyUniform heuristic and the strength of the ‘lucky-number’ pattern.

I measure the strength of the ‘lucky-number’ pattern by the difference be-

tween the relative frequencies of the most popular and the least popular choices

in the BettingTask. Then, I relate this difference to the mean squared rank dif-

ference between game data and TeamLuckyUniform prediction, for each player

role. I find that all five correlations are negative (for discoordinators, hiders,

seekers, to-your-right and Blotto players). The probability of all five correlations

showing as negative if there was no true relationship is p = (1
2
)5 = 0.03125.

4.5 Relating ‘lucky numbers’ and other concepts

As a final point, I relate ‘lucky numbers’ to characteristics of the labels within

their frame. As characteristics, I use subjective and relatively objective criteria.

As objective criteria, I include relative position (0.5 for the middle, 1 for the right-

most locations) and valence (positive, negative, or neutral). Subjective criteria

are salience and representativeness, which I objectivise by measuring students’

assessment of them (in SalienceRating and RepresentRating (representative-

ness is important for choice among evidently equivalent items, cf. Bar-Hillel,

2015). Table 5 reports the corresponding regression.

Observation. Several characteristics interact to make an item a ‘lucky number’,

among them salience, position, and valence.

As we can see from the Table, there seem to be four characteristics that in-

crease the relative frequency of an item being picked in the BettingTask: (i)
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coefficient s.e. p-value

(Intercept) −0.21 (0.14) 0.1461

negative 0.01 (0.12) 0.9425

positive −0.11 (0.08) 0.1959

SalienceRating 0.43 (0.13) 0.0020

RepresentRating 0.25 (0.13) 0.0693

relative position 0.62 (0.11) 1 · 10−6

(relative position)2 −0.54 (0.10) 5 · 10−6

negative·SalienceRating −0.26 (0.22) 0.2574

positive·SalienceRating 0.33 (0.15) 0.0364

R2 0.72

Adj. R2 0.66

Num. obs. 44

Table 5: Regression of relative choice frequencies in the BettingTask on label

characteristics.

being rated as more salient, (ii) being positioned in the middle (to see this, com-

bine relative position and its square); (iii) having a positive connotation when the

item is salient (in the context of our frames, this essentially means that the pos-

itively connoted item is presented along with three negatively connoted items);

and potentially, (iv) being rated as being representative. While this analysis has

to be taken with caution because the set of frames is rather peculiar, it may serve

as a first indication of what may determine ‘lucky numbers’ in general.

5 The discovery process

Some readers might worry in how far the heuristic has been tailored to the data.

To address this issue, I take the unusual step to briefly portray the research pro-

cess. This project started out as an attempt to adapt the level-k approach to

explain the data from coordination, discoordination, and hide-and-seek games

by basing it on empirical measures (as in my Betting-Lk or Bounded Lk mod-
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els). At some point I noted that nothing more than the BettingTask data and

uniform randomisation was needed to account for the data remarkably well—and

that I was not able to come up with any model that would perform systemati-

cally better. Therefore I sat down and thought about which easy-but-plausible

psychological train of thought might lead to such behaviour. This was the mo-

ment when I came up with the heuristic. But because the heuristic was at that

moment tailored to fit the data, I had to find some implications of the model that

I could test as new hypotheses. So I drew out the implications and, after having

confirmed that they bear out on the old data I conducted the sessions for the

to-your-right and Blotto games. So, rather than to think about what observed

patterns could be implied by the heuristic, I looked for potential regularities the

heuristic would predict and only then tested the predictions against the data.

6 Discussion

In this paper, I have presented a heuristic for strategic choice that seems to cap-

ture behaviour in strategy-isomorphic games, in which the payoff matrix pro-

vides little guidance for choice. I drew out three crude implications, invariance

(to the game), U-differential (on the prevalence of uniform choices), and predict-

differential (on explanatory power as a function of the lucky-number pattern)

that bear out well also on newly collected data. The three implications are unique

to the heuristic. Predict-differential makes sense only within the context of the

heuristic. None of the alternative models predicts the U-differential convinc-

ingly.18 And the only other model that would predict any kind of ex-ante in-

variance (in a trivial sense) is the standard Nash-equilibrium. However, for two

distributions sampled under Nash-equilibrium play, we would not expect invari-

ance in the rank distributions.

The domain of the proposed heuristic is the set of strategy-isomorphic games,

in which the payoff matrix provides little guidance. This class of games is rele-

18Deriving the predictions for the three level-k models and calculating the predictions’ mean
squared deviations from randomness do in fact yield the highest mean squared deviations for
seekers; however, the differences in mean squared deviations to the next-closest player role are
all negligible (at most 5%, compared to about 66% for the heuristic).
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vant and prominent in the literature: coordination, discoordination, hide-and-

seek, rock-paper-scissors and Colonel Blotto are all well-studied games. Re-

searchers already have studied coordination, discoordination, and hide-and-seek

games using the abstract ‘landscapes’ we have looked at in this paper, and for

rock-paper-scissors andColonel Blotto, studying them in non-neutral ‘landscapes’

makes a lot of sense, too. “Rock”, “paper”, and “scissors”, or “Florida” and “Ohio”

(when applying Colonel Blotto to electoral campaigns) are all non-neutral de-

scriptions. So the question arises naturally what effect non-neutral descriptions

have on how people play the games. The answer is that people’s choices are

strongly biased towards the descriptions they prefer to bet on in a lottery task.

An important question for further research is whether this is still the case if

we introduce payoff asymmetries like in the coordination games Crawford et al.

(2008) study.

At a first glance, ‘lucky numbers’ may seem like a weird concept for eco-

nomic decisions.19 At a second glance, the concept may make sense when we

understand it as a tie-breaking rule: even if we put the heuristic aside, we can

see that the lucky numbers tell us a lot about behaviour. This becomes obvious

in Result 4: the qualitative pattern of behaviour in games tends to come closer

to the lucky-number pattern the more pronounced the lucky-number pattern is.

Perhaps the most surprising finding in the paper is that there is so little of a

systematic strategic reaction to the attraction to lucky numbers even in games

like hide-and-seek: adding several layers of best-responses to a lucky-number-

choosing level-0 performs only somewhat better—and only in the hide-and-seek

game—than adding a single layer of uniform randomisation under the heuristic.

The way I have been using the concept of ‘lucky numbers’ in this paper is not

fully congruent to the meaning of lucky numbers in everyday language. I do not

assume that participants being asked “what is your lucky number in a-b-a-a?”

would reply by “central A.” Rather, I use ‘lucky numbers’ as a description for what

participants choose in a lottery context. Section 4.5 relates these choices to other

concepts like salience, representativeness, and valence. I strongly believe that

using individual-level data—measuring ‘lucky-numberedness’ and behaviour in

19In fact, they have been studied only in the context of lottery choices themselves (e.g. Simon,
1998), and in the context of Chinese customer behaviour (e.g. Yang, 2011).
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the games within-participant—is infeasible. This belief rests on the intuition that

once I have chosen a particular item in an a-a-a-b frame, this will change my rea-

soning and perception in the next task on the same frame. Because of this, the

present paper relies on approximations that are valid only under certain assump-

tions: the ‘lucky-numberedness’ as seen by a decision-maker in a specific game

is approximated by the lottery-ticket choices of other people in the same frame.

This approximation assumes homogeneity of lucky numbers across participants,

and abstracts from sampling variation by equating empirical relative frequencies

with population probability parameters. However, I prefer this approach over re-

lying on the researcher’s intuition for specifying, e.g., level-0, the approach taken

in some prominent papers on level-k reasoning.

The commonmodels of strategic behaviour probably err on the side of ascrib-

ing too much strategic reasoning to the average participant in our experiments.

The heuristic I have presented here is likely to err on the other side. And yet, it

seems to capture important elements of decision-making. The heuristic should

be seen as a thought-provoking impulse to help us finally get to grips with the

conundrum we face since the papers by Rubinstein, Heller, and Tversky.

23



References

Bar-Hillel, M. (2015). Position effects in choice from simultaneous displays: A

conundrum solved. Perspectives on Psychological Science, 10(4):419–433.

Bardsley, N., Mehta, J., Starmer, C., and Sugden, R. (2010). Explaining focal points:

Cognitive hierarchy theory Versus team reasoning. Economic Journal, 120:40–

79.

Bauer, D. (2016). Belief-action consistency: Framing of belief elicitation in strate-

gic interactions. Working Paper.

Bauer, D. and Wolff, I. (2016). Explaining belief-action consistency by the relia-

bility of beliefs. Unpublished.

Crawford, V. P., Gneezy, U., and Rottenstreich, Y. (2008). The power of focal

points is limited: Even minute payoff asymmetry may yield large coordination

failures. American Economic Review, 98(4):1443–1458.

Crawford, V. P. and Iriberri, N. (2007). Fatal attraction: Salience, naïveté, and

sophistication in experimental ‘hide-and-seek’ games. American Economic Re-

view, 97(5):1731–1750.

Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experi-

ments. Experimental Economics, 10(2):171–178.

Greiner, B. (2015). An online recruitment system for economic experiments. Jour-

nal of the Economic Science Association, 1(1):114–125.

Groseclose, T. and Snyder, Jr., J. M. (1996). Buying supermajorities. American

Political Science Review, 90(2):303–315.

Hargreaves Heap, S., Rojo Arjona, D., and Sugden, R. (2014). How portable is

level-0 behavior? A test of level-k theory in games with non-neutral frames.

Econometrica, 82(3):1133–1151.

Heinrich, T. and Wolff, I. (2012). Strategic reasoning in hide-and-seek games: A

note. Research Paper 74, Thurgau Institute of Economics.

24



Mehta, J., Starmer, C., and Sugden, R. (1994). The nature of salience: An experi-

mental investigation of pure coordination games. American Economic Review,

84(3):658.

O’Neill, B. (1987). Nonmetric test of the minimax theory of two-person zerosum

games. Proceedings of the National Academy of Sciences of the United States of

America, 84:2106–2109.

Rubinstein, A. (1999). Experience from a course in game theory: Pre- and

postclass problem sets as a didactic device. Games and Economic Behavior,

28(1):155–170.

Rubinstein, A. and Tversky, A. (1993). Naive strategies in zero-sum games. Work-

ing paper 17-93, The Sackler Institute of Economic Studies.

Rubinstein, A., Tversky, A., and Heller, D. (1997). Naive strategies in compet-

itive games. In Albers, W., Güth, W., Hammerstein, P., Moldovanu, B., and

van Damme, E., editors, Understanding Strategic Interaction–Essays in Honor of

Reinhard Selten, pages 394–402. Springer-Verlag.

Schelling, T. C. (1960). The Strategy of Conflict. Harvard University Press, Cam-

bridge, Massachusetts.

Simon, J. (1998). An analysis of the distribution of combinations chosen by UK

National Lottery players. Journal of Risk and Uncertainty, 17(3):243–277.

Sugden, R. (1993). Thinking as a team: Towards an explanation of nonselfish

behavior. Social Philosophy & Policy, 10(1):69–89.

Sugden, R. (1995). A theory of focal points. Economic Journal, 105(430):533–50.

Wolff, I. (2015). Foundations of strategic thinking and strategic behaviour. Un-

published.

Wolff, I. (2016). Elicited salience and salience-based level-k. Economics Letters,

141:134–137.

Yang, Z. (2011). “lucky” numbers, unlucky consumers. Journal of Socio-

Economics, 40(5):692–699.

25



Appendix A Full data



APPENDIX A FULL DATA 27

Player role frame location 1 location 2 location 3 location 4

coordinators 86 0 10 4
polite-rude-honest-friendly 6 54 12 28

6 6 14 74
abaa 14 72 13 1

6 88 6 0
hate-detest-love-dislike 2 6 88 4

1-2-3-4 38 17 29 15
aaba 5 27 54 14

discoordinators 39 14 18 29
polite-rude-honest-friendly 28 20 32 20

17 27 23 33
abaa 18 21 38 24

17 40 29 15
hate-detest-love-dislike 16 29 26 29

1-2-3-4 21 32 30 17
aaba 26 24 32 18

Ace-2-3-Joker 31 17 21 31
baaa 34 23 19 23
aaab 31 22 18 29

hiders 23 23 43 11
polite-rude-honest-friendly 15 26 51 8

21 26 34 19
abaa 15 29 33 23

15 40 34 11
hate-detest-love-dislike 11 23 38 28

1-2-3-4 25 22 36 18
aaba 22 35 19 25

seekers 29 24 42 5
polite-rude-honest-friendly 8 40 40 11

7 25 34 34
abaa 9 21 53 17

16 55 21 8
hate-detest-love-dislike 20 21 55 14

1-2-3-4 20 18 48 14
aaba 13 51 21 15

to-your-right players 15 30 32 24
polite-rude-honest-friendly 22 22 33 24

18 22 33 27
abaa 15 19 34 32

16 20 33 31
hate-detest-love-dislike 23 17 30 30

1-2-3-4 17 21 39 23
aaba 22 23 29 26

Ace-2-3-Joker 25 23 31 21
baaa 15 26 34 25
aaab 24 23 28 25

Colonel-Blotto players 30 26 26 18
polite-rude-honest-friendly 26 25 26 22

24 26 28 22
abaa 23 29 24 24

25 26 26 23
hate-detest-love-dislike 25 23 30 21

1-2-3-4 24 25 26 25
aaba 24 25 28 23

Ace-2-3-Joker 26 26 24 24
baaa 29 25 26 20
aaab 24 26 25 24

Table A.6: Full data of the games (relative choice frequencies; for Colonel Blotto:
average proportion of troops).
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Task frame location 1 location 2 location 3 location 4

BettingTask 25 29 36 11
polite-rude-honest-friendly 12 8 53 27

16 34 35 16
abaa 13 33 41 13

6 58 26 11
hate-detest-love-dislike 7 12 69 12

1-2-3-4 18 21 36 25
aaba 13 36 36 15

Ace-2-3-Joker 33 14 19 34
baaa 27 25 24 24
aaab 18 21 34 26

HiderBettingTask 40 19 19 22
polite-rude-honest-friendly 12 17 50 21

24 17 28 31
abaa 9 53 21 17

14 59 16 12
hate-detest-love-dislike 12 14 53 21

1-2-3-4 19 28 31 22
aaba 26 19 40 16

Ace-2-3-Joker 28 14 29 29
baaa 31 24 19 26
aaab 16 22 22 40

RepresentRating† 10 32 27 31
polite-rude-honest-friendly 34 7 26 32

38 32 27 3
abaa 38 5 30 28

29 19 30 21
hate-detest-love-dislike 34 15 20 30

1-2-3-4 33 23 16 28
aaba 34 23 8 35

Ace-2-3-Joker 39 15 17 29
baaa 11 35 25 29
aaab 43 25 24 8

SalienceRating† 94 2 4 0
polite-rude-honest-friendly 14 57 21 8

5 6 8 81
abaa 2 91 4 4

13 72 11 4
hate-detest-love-dislike 16 19 62 3

1-2-3-4 38 21 25 16
aaba 3 4 93 1

Ace-2-3-Joker 28 3 3 66
baaa 92 3 5 0
aaab 5 6 3 86

†In case a participant rated several items as most representative/most salient, her count would be evenly distributed on
all corresponding locations.

Table A.7: Full data from the complementary tasks (relative choice frequencies;
for the Rating tasks: relative frequencies of location ranked the highest).
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Player role frame location 1 location 2 location 3 location 4

coordinators 43 0 5 2
polite-rude-honest-friendly 3 27 6 14

3 3 7 37
abaa 17 88 16 1

3 44 3 0
hate-detest-love-dislike 1 3 44 2

1-2-3-4 70 32 54 28
aaba 9 50 100 26

discoordinators 19 7 9 14
polite-rude-honest-friendly 14 10 16 10

8 13 11 16
abaa 80 92 166 104

8 19 14 7
hate-detest-love-dislike 8 14 13 14

1-2-3-4 61 92 89 50
aaba 75 71 93 53

Ace-2-3-Joker 90 49 62 91
baaa 100 68 56 68
aaab 90 63 54 85

hiders 12 12 23 6
polite-rude-honest-friendly 8 14 27 4

11 14 18 10
abaa 51 97 113 78

8 21 18 6
hate-detest-love-dislike 6 12 20 15

1-2-3-4 46 41 67 33
aaba 41 65 36 47

seekers 18 15 26 3
polite-rude-honest-friendly 5 25 25 7

4 16 21 21
abaa 26 59 149 47

10 34 13 5
hate-detest-love-dislike 11 12 31 8

1-2-3-4 17 15 40 12
aaba 11 43 18 13

to-your-right players 16 33 35 26
polite-rude-honest-friendly 24 24 36 26

20 24 36 30
abaa 17 21 37 35

18 22 36 34
hate-detest-love-dislike 25 19 33 33

1-2-3-4 19 23 43 25
aaba 24 25 32 29

Ace-2-3-Joker 28 25 34 23
baaa 17 29 37 27
aaab 26 25 31 28

Colonel-Blotto players 11.87 10.38 10.35 7.31
polite-rude-honest-friendly 10.28 10.18 10.56 8.87

9.62 10.40 11.06 8.81
abaa 9.16 11.48 9.55 9.65

10.02 10.33 10.49 9.03
hate-detest-love-dislike 10.03 9.37 11.86 8.22

1-2-3-4 9.69 9.89 10.45 9.90
aaba 9.73 10.14 11.03 9.10

Ace-2-3-Joker 10.21 10.31 9.66 9.56
baaa 11.52 9.98 10.47 8.03
aaab 9.68 10.48 10.13 9.57

Table B.8: Full data of the games (for Colonel Blotto: average number of troops).
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Task frame location 1 location 2 location 3 location 4

BettingTask 35 40 50 15
polite-rude-honest-friendly 17 11 74 38

22 47 49 22
abaa 18 46 58 18

8 81 36 15
hate-detest-love-dislike 10 17 96 17

1-2-3-4 25 29 51 35
aaba 16 45 45 18

Ace-2-3-Joker 46 19 27 48
baaa 38 35 34 33
aaab 25 30 48 37

HiderBettingTask 23 11 11 13
polite-rude-honest-friendly 7 10 29 12

14 10 16 18
abaa 5 31 12 10

8 34 9 7
hate-detest-love-dislike 7 8 31 12

1-2-3-4 11 16 18 13
aaba 15 11 23 9

Ace-2-3-Joker 16 8 17 17
baaa 18 14 11 15
aaab 9 13 13 23

RepresentRating† 10.5 32.67 27.17 31.67
polite-rude-honest-friendly 34.5 7.5 27 33

38.33 32.83 27.83 3
abaa 38.25 4.75 30.75 28.25

29.83 19.5 30.83 21.83
hate-detest-love-dislike 34.67 15.5 20.83 31

1-2-3-4 33.33 23 16.67 29
aaba 35 23 8.5 35.5

Ace-2-3-Joker 39.92 15.42 17.58 29.08
baaa 11.5 35.5 25.5 29.5
aaab 44.17 25.67 24.17 8

SalienceRating† 90 2 4 0
polite-rude-honest-friendly 13 55 20 8

5 5.5 7.5 78
abaa 2 87 3.5 3.5

12.5 69 11 3.5
hate-detest-love-dislike 15 18.5 59.5 3

1-2-3-4 36.67 20.17 23.67 15.5
aaba 2 3 74 1

Ace-2-3-Joker 27 3 3 63
baaa 88.5 2.5 5 0
aaab 5 5.5 3 82.5

†In case a participant rated several items as most representative/most salient, her count would be evenly distributed on
all corresponding locations.

Table B.9: Full data from the complementary tasks.



Appendix C “Neutral non-neutral” frames only

model fitted on LogL MSE modes predicted parameters

Betting-Lk coordination -627 0.0376 1 out of 3 2
Bounded Lk -626 0.0389 1 out of 3 3
Salience-Lk -684 0.0234 3 out of 3 2
TeamLuckyUniform† -684 0.0225 3 out of 3 0

Betting-Lk discoordination -2635 0.0033 3 out of 6 3
NashEqm -2637 0.0036 1.5‡ out of 6 —
Salience-Lk -2635 0.0032 3 out of 6 3
Bounded Lk -2632 0.0032 5 out of 6 3
LuckyNoEqm -2623 0.0027 2 out of 6 3
TeamLuckyUniform -2621 0.0026 4 out of 6 1

NashEqm hide & seek -1615 0.0135 (.75,.75)‡ out of (3,3) —
LuckyNoEqm -1572 0.0094 (0,1) out of (3,3) 3
Salience-Lk -1604 0.0225 (0,3) out of (3,3) 5
Bounded Lk -1579 0.0091 (1,3) out of (3,3) 5
TeamLuckyUniform -1558 0.0071 (3,3) out of (3,3) 1
Betting-Lk -1540 0.0042 (3,3) out of (3,3) 5

†Model includes a tremble with 1% probability to take care of zero-probability events. The fit improves further when
allowing for more randomisation (e.g., 20% randomisation, LogL = -603, mse = 0.0106). ‡Expected number of correctly-
predicted modes under uniform randomisation.

Table C.10: Data-fitting performance of the models, order as in the main text (by
LogL of the original estimate).

Spearman coefficient p−value No. of frames

hiders 0.47 0.118 3
seekers 0.67 0.025 3
discoordinators 0.28 0.185 6
to-your-right players 0.37 0.078 6
Blotto players 0.30 0.149 6

Table C.11: Correlations of ranks: game data and BettingTask data.

fitted prob(uniform mixing) in %

seekers 0
hiders 59
discoordinators 65
to-your-right players 79
Blotto players 92

Table C.12: Fitted probability of uniform mixing for each player role.
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