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Abstract:

In the current literature, there is a lively debate about whether a level-k model
can be based on salience to explain behaviour in games with distinctive action
labels such as hide-and-seek or discoordination games. This study presents six
different experiments designed to measure salience. When based on any of these
empirical salience measures, the standard level-k model does not explain hide-
and-seek behaviour. Modifying themodel such that players follow salience when
payoffs are equal, the model fits hide-and-seek data well. However, neither the
original nor the modified model account for data from a discoordination game.
This holds true even when basing the level-k prediction on participants’ own
individual salience assessments.
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1 Introduction

Matching-pennies games and their generalisation to multiple actions, dubbed
hide-and-seek games, have been well-studied games in game theory from its
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ing and the 2014 ESA European Meeting for helpful comments and fruitful discussions. I thank
Vincent Crawford and Nagore Iriberri for rapidly answering any questions with respect to their
paper, as well as for their comments on an earlier version of this paper. Financial support by the
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very beginning (cf., e.g., von Neumann, 1953). Real-life examples abound, from
markets in which the brand leader will continue to have the largest revenues as
long as it can match the rival products’ features, to obvious applications in mil-
itary, police, and intelligence work. While the standard game-theoretic solution
to the generic games is straightforward, experiment participants do not seem
to act according to this prediction (see Eliaz and Rubinstein, 2011, for a repeated
matching-pennies game, and Rubinstein and Tversky, 1993, as well as Rubinstein
et al., 1996, for hide-and-seek games).

In a well-noted paper, Crawford and Iriberri (2007; henceforth CI) show how
a salience-based level-kmodel can account for the observed patterns in hide-and-
seek games if we assume a specific salience pattern. Current work by Hargreaves
Heap et al. (2014) shows that a level-k model cannot account simultaneously for
data from hide-and-seek games, coordination games, and discoordination games
all played on the same action-set frame if we assume the same salience pattern for
all games. In a comment on this work, Crawford (2014) argues that level-k should
not be applied to coordination games because these games fall into the domain of
team-reasoning theory (Sugden, 1995). However, if we take out the coordination
games in Hargreaves Heap et al.’s study, we can no longer say anything about
the descriptive validity of the level-k model. This is the gap the present paper
fills.

In this paper, I provide six empirical measures of what is salient and show
that none of them is in line with CI’s assumption on salience. More impor-
tantly, I show that the proposed level-k model no longer predicts behaviour well
when based on any of these empirical salience measures. In contrast to CI’s
proposed model, my estimations suggest that salience influences behaviour di-
rectly, on top of determining the anchor of players’ belief cascades. A simple and
plausible model modification taking this influence into account restitutes the re-
markable fit of CI’s level-k model. However, neither the original model nor its
modification can explain data from discoordination games. Most importantly, I
show that a level-k model based on empirical salience does not account for the
discoordination-game data even when we account for the fact that there is het-
erogeneity in participants’ elicited salience perceptions (so that every participant
may have their own level-0).

This paper contributes to a growing literature that finds empirical support
for level-k-like thinking in a variety of games.1 It also contributes to a small
but growing literature on how salience shapes behaviour and how this can be
incorporated into game-theoretic models.2 Crawford and Iriberri (2007) do a re-
markable job in joining these two branches of the literature. What the present

1E.g., Burchardi and Penczynski (2014) or the many papers cited in Crawford et al. (2013).
2E.g, Mehta et al. (1994) or Bardsley et al. (2010).
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2 HIDE-AND-SEEK AND THE LEVEL-K EXPLANATION

paper shows is that salience influences on behaviour remain a phenomenon that
is not as straightforward as it may seem. It is not obvious a priori what is salient
in the eyes of experimental participants, and it remains to be understood how
exactly salience shapes participant behaviour.

The remainder of this paper is organised as follows: Section 2 presents the
hide-and-seek game in its archetype version, next to CI’s level-k explanation. In
Section 3, I present the six salience-elicitation experiments, the results of which
are presented in Section 4.1. Section 4.3 presents the equilibrium model with
salience-based payoff-perturbations CI use as a benchmark, and Section 4.4 in-
troduces the level-k models used in this paper, including the new modification
introduced here. In Section 4.5, I report on the estimates that result for the mod-
els when these are based on an experimentally-elicited salience-pattern. In Sec-
tion 4.6, I explore the level-k model’s predictive power in a coordination and a
discoordination games. Section 4.7 incorporates a heterogeneous level-0 using
participants’ own individual salience assessments, and evaluates the resulting
models’ data fit. Section 5 summarises the data and discusses the findings. An
explanation of the model denotations used throughout the paper can be found
in Section 4.2.

2 Hide-and-seek and the level-k explanation

In the archetype version of the hide-and-seek game, a “hider” possesses a “trea-
sure” she can hide in one of four boxes, labelled “A”, “B”, “A”, and “A”. A “seeker”
may open one of these boxes. If he chooses the same box as the hider, the seeker
gains the treasure, otherwise the hider keeps it. This multiple-action matching-
pennies game obviously has a unique Nash equilibrium in mixed strategies, with
both the hider and the seeker choosing each box with 25% probability. The typ-
ical distribution observed in experimental implementations of the game, on the
other hand, has a strong mode on “central A” for both roles, being even more
pronounced for seekers than for hiders (which leads to a substantial seeker-
advantage relative to equilibrium).3

Let us now turn to how a level-k model may account for the above pattern.
Level-k models have a very simple structure. Each k-type, k > 0, believes all
her opponents are of level-(k − 1) and best-responds to this belief.4 The two

3The data from Rubinstein et al.’s experiments are reported in Appendix A.
4This type of model was introduced by Stahl and Wilson (1994, 1995) and Nagel (1995), and

later adapted by Costa-Gomes et al. (2001). It is closely-related to other cognitive-hierarchy mod-
els like that proposed by Ho et al. (1998) and refined in Camerer et al. (2004). For a discussion of
both approaches, cf. Crawford et al. (2013). Note that Crawford and Iriberri (2007) allow for er-
rors in their model. However, given the estimated error rate for the models under the assumption
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crucial elements to close the model are the specifications of level-0—which is
assumed to exist in the players’ minds only—and of the type distribution. For
the latter, CI argue that “[t]he estimated distribution tends to be stable across
games and hump-shaped,” (p. 1734) while the level-0 specification is the central
innovation of their paper. Instead of assuming the traditional uniform mixture
over all possible actions, CI ‘translate’ Rubinstein and co-authors’ statements on
salience into (latent) numeric variables to use them as level-0 in their model. In
CI’s words,

“[t]he ‘B’ location is distinguished by its label, and so is salient
in one of Thomas Schelling’s (1960) senses. And the two ‘end A’ lo-
cations, though not distinguished by their labels, may be inherently
salient, as RT [Rubinstein and Tversky, 1993] and RTH [Rubinstein,
Tversky, and Heller, 1996] argue, citing Nicholas Christenfeld (1995).
As RT note, these two saliencies interact to give the remaining loca-
tion, ‘central A,’ its own brand of uniqueness as ‘the least salient
location.’ ” (p. 1732).

CI translate the last sentence as implying that “central A” really is “the least
salient location,” thus being chosen by a level-0 player least often. I argue that
this need not be true. If “central A” has “its own brand of uniqueness”, it is not
clear a priori how it should be ranked in terms of salience. The evidence pre-
sented in this paper suggests “central A” is in fact more salient than “final A”,
whereas it is unclear how it compares to “first A” in terms of salience.

3 Design of the salience-elicitation experiments

The purpose of the salience-elicitation exercise is to provide a clearer under-
standing of what may constitute an adequate level-0 specification for the model.
I argue that there are multiple ways of how salience could determine level-0 that
are associated with distinct empirical measures. On the level of beliefs involved,
I follow three approaches: a first approach is to define level-0 directly in terms of
the available actions’ salience (primary salience in Bardsley et al., 2010, referring
to Lewis, 1969). This corresponds most closely to CI’s proposedmodel. A second
approach is to ask what people think will be salient for other people (secondary
salience in Bardsley et al., 2010, also referring to Lewis, 1969). This corresponds
more closely to CI’s general reasoning about level-0, given level-0 is meant to ex-
ist only in the players’ minds. Finally, we may be tempted to argue that the truly

of uniform errors is zero, I abstract from errors for the time being. None of the findings hinges
on this simplification.
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3 DESIGN OF THE SALIENCE-ELICITATION EXPERIMENTS

relevant aspect would be to ask what people think others will think everybody
will hold to be salient, and so on, ad infinitum.5

It can be argued that only primary salience should be a candidate for level-
0, given secondary and higher-order salience involve strategic thinking in the
sense of guessing about others’ perceptions or even about others’ reasoning
about these perceptions. Because strategic thinking is what the model should
explain, so the argument, we should not include strategic thinking as an input
into the theory via level-0. In this paper, I choose to be more lenient with the
theory by allowing for higher-order salience, to give the model a greater chance
of being in accordance with the data. If we cannot accomodate the data, neither
when not allowing some strategic deliberation to sneak in through our salience
measures nor when doing so, this will be more informative than if we stuck to
only the more puristic version of the model. On the other hand, if there were a
model able to explain choices based on empirically-measured secondary salience,
I would see it as a fruitful first step to a more complete model that gets rid of the
problem. I therefore include also secondary and ‘infinite-level’ salience as can-
didates for level-0.6

Having looked at the above ‘levels of salience’, I also want to test whether the
game description will shape the salience of the available actions. More precisely,
players may assess an action’s salience differently, depending on whether they
look at the actions per se, or whether they look at the actions taking into account
the game they will be playing.7 In the latter case, it would be plausible also to
assume that players’ roles may affect their salience assessment.8

In this study, I examine six experimental measures of a salience-based level-
0. Note that the point of this exercise is not to compare the different measures.
Rather, I want to test whether any of these measures would yield a salience pat-
tern that, being plugged into CI’s level-k model, would allow that model to ac-
count for the data.9

The first three salience measures I use are a full variation along the belief di-
mension, keeping the game description out. The fourthmeasure uses the secondary-
saliencemeasure to explore the effect of introducing the game story (andwhether
an asymmetry follows from that). Measures five and six provide alternative mea-
sures of primary salience with and without the game story.10 To be precise, I look

5Bardsley et al. (2010) point out there may be higher ‘levels of salience’ but argue that they
are likely to coincide with secondary salience. My results would support this conjecture.

6I thank Hargreaves Heap et al. for raising this point.
7In fact, the study by Hargreaves Heap et al. (2014) suggests this may be the case.
8CI partially incorporate this latter aspect by presenting different model specifications, e.g.,

including a salience-seeking level-0 seeker and a salience-avoiding level-0 hider.
9Hence, no carewas taken to have similar numbers of observations in the different treatments.
10Measures five and six were added because some commenters on an earlier draft raised doubts
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at the following experiments:11

Picking Task. Elicitation of the different boxes’ salience by asking people to choose one
of four boxes labelled “A”, “B”, “A”, and “A”, and click on the chosen box,
on a separate page of a post-experimental questionnaire after an unrelated
experiment.12 This is the “picking task” Bardsley et al. (2010) use to elicit
primary salience. As a crucial complementary measure to assess salience,
I record response times for this task.

Guessing Task. Elicitation of what people think will be salient for other people. For this
purpose, we ask participants to estimate the relative click frequencies from
the answers elicited by the Picking Task.13 This is the “guessing task”
Bardsley et al. (2010) use to elicit secondary salience.

Beauty Contest. A beauty contest on the consensus onwhat is salient. The contest anchored
in the question “which is the most salient box, which are the second, third,
and fourth most salient boxes?” and was conducted as a classroom exper-
iment in the Experimental Methods course.14

Post-Game Guessing. Elicitation of what people who know the game think will be salient for
others. For this purpose, we asked participants to estimate the relative
click frequencies of the Picking Task responses. This was done after they
had played the hide-and-seek game but before they got any feedback. This
measure serves as a benchmark for how the game—and possibly, the role—
changes salience-perceptions.15

Rating Task. Participants were asked to rate the salience of each of the four boxes on
an 11-point Likert scale ranging from “extremely inconspicuous” to “ex-
tremely conspicuous”.

Post-Story Rating. Participants were explained the hide-and-seek game in a role-neutral for-
mat. Then, they completed the Rating Task. They did not play the game
itself.

about the construct validity of the Picking Task used in earlier studies (such asMehta et al., 1994,
or Bardsley et al., 2010), even if augmented by response times like in our first measure.

11A translated version of the instructions to each task is provided in Appendix B.
12The post-experimental questionnaire mainly contains questions from the 16PF personality

inventory. Participants have not participated in any hide-and-seek experiment before.
13The task was incentivised in the following way: if no frequency differed from the true value

bymore than 5% (10%/20%), participants could earn an additional 50 (25/10) Euro cents, otherwise,
they did not earn anything. The task was the first task participants faced in the experiment, they
knew there would be further tasks, but they did not know what those tasks would be.

14Amongst those stating the modal ordering, a prize of 12 Euros (about USD 15.60 at the time)
was raffled off.

15Incentives as in the Guessing Task.
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None of the participants participated in more than one of the six experiments.
The first four Experiments were run at the University of Konstanz, the Picking
Task, the Guessing Task, and the Post-Game Guessing at its Lakelab. The
Rating Task and the Post-Story Rating were added as a questionnaire to a
completely unrelated study run at the University of Hamburg. There have not
been other studies using an ABAA-like setup at the University of Hamburg.

4 Results

This section is organised as follows: first, I report on the outcomes of the salience-
elicitation exercises. Section 4.2 introduces the denominations of all models
that appear in the paper. Section 4.3 briefly reviews what the elicited salience-
measures mean for Crawford and Iriberri’s (2007; CI) benchmark model of an
equilibrium with payoff perturbations. Section 4.4 presents the level-k models
used, including the modification introduced in this paper. Section 4.5 looks at
what the salience-elicitation exercises would mean for the different models, by
replicating CI’smodel-fitting exercise using the elicited salience patterns as level-
0. Section 4.6 explores whether any of the level-k models can predict data from a
coordination and a discoordination game. Finally, Section 4.7 analyses whether a
level-kmodel based on participants’ individual salience assessments can account
for the discoordination-game data from Section 4.6. For ease of notation, in the
remainder of this article I will describe the locations “A”, “B”, “A”, and “A” byA(1),
B(2), A(3), and A(4), respectively.

4.1 Salience in the ABAA hide-and-seek game

The results of the six salience-elicitation experiments are reported in Table 1,
together with the respective numbers of independent observations.

Observation 1. B(2) is the most salient alternative, and A(3) is not the (single)
least salient alternative.

The first part can be seen easily by looking at the second and third data
columns in Table 1. Treating the different salience measures as independent re-
alisations of an underlying ‘true’ salience pattern, we can construct the crudest-
possible statistical measure as follows: Assuming that the next-salient candidate
has an equal chance of coming out as the most salient alternative on each of the
seven measures (frequency and response time in the Picking Task, estimate by
Guessing-Task participants and by hiders and by seekers in Post-Game Guess-

ing, any rankingmeasure in theBeautyContest), and the ratings in theRating
Task and in Post-Story Rating, we can compute the p-value of the according
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A(1) B(2) A(3) A(4)

Picking Task (405 participants)
relative click frequencies (in %) 21 38 35 6
response times (in sec)
mean 8.8 7.7 8.5 11.9
median 8.0 7.1 7.5 9.4

Guessing Task (72 participants)
average estimated relative click frequency 21 41 22 15

Beauty Contest (30 participants)
rank in beauty contest

winning order (chosen by 14 participants) 2 1 3 4
mean ranks 2.3 1.5 2.5 3.6

Post-Game Guessing (156 participants)
average estimated relative click frequency 19 39 24 18
...by hiders (78 obs.) 19 38 24 19
...by seekers (78 obs.) 19 40 25 17

Rating Task (90 participants)
average conspicuousness reported (0 to 10) 5.7 7.5 5.6 5.3

Post-Story Rating (90 participants)
average conspicuousness reported (0 to 10) 3.8 7.4 4.3 4.0

Table 1: Salience assessments of the four boxes denoted by “A”, “B”, “A”, and “A”.

binomial test to be p = 1/128. The same line of argument yields that A(3) is
more salient than A(4), with the same level of significance.

Observation 2. From the six different salience measures, I extract three possible
salience-patterns: B(2)[A(3)A(1)]A(4), B(2)A(3)[A(1)A(4)], and B(2)[A(3)A(1)A(4)]
(locations ordered by salience, square brackets bundle equally-salient locations).

The first pattern, B(2)[A(3)A(1)]A(4), can be observed in the Guessing Task,
arguably in the mean ranks of the Beauty Contest, and possibly in the Rating
Task. The second pattern, B(2)A(3)[A(1)A(4)], can be seen in Post-Game Guess-

ing and possibly in Post-Story Rating, while both the Rating Task and the
Post-Story Rating data can be interpreted as yielding the patternB(2)[A(3)A(1)A(4)].
In addition, one might argue that the Picking Task yields [B(2)A(3)]A(1)A(4),
but the response times clearly indicate that B(2) and A(3) are salient to different
degrees.16 Note also that for the predictions of CI’s level-k model, the poten-
tial patterns B(2)A(3)A(1)A(4) (median response times in the Picking Task) or

16None of the conclusions in this paper would change if we included [B(2)A(3)]A(1)A(4) in
the list of salience patterns.
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B(2)A(1)A(3)A(4) (winning order of the Beauty Contest) are equivalent to the
pattern B(2)[A(3)A(1)]A(4).

Observation 3. The description of the game affects salience but does not lead to
any reversal in the rank order of the locations’ salience ranks. Moreover, partic-
ipants’ roles in the hide-and-seek game do not seem to influence their estimates
of other people’s salience perceptions.

For the first part of Observation 3, note that including the description of the
game before the Rating Task has average reported conspicuousness of all A-
alternatives drop sharply (p < 0.001 for A(1), p = 0.993 for B(2), and p = 0.004
forA(3) andA(4)). Further, compare the average estimated relative click frequen-
cies of the Guessing Task and Post-Game Guessing. While the largest quanti-
tative difference between the corresponding average estimates in the Guessing
Task and Post-Game Guessing is a mere 3%, there seems to be a clear difference
in the qualitative pattern: in the Guessing Task, there is a substantial difference
between the average estimated relative click frequency ofA(1) andA(4) (and none
betweenA(1) andA(3)), while in Post-Game Guessing, the average estimates for
A(1) and A(4) are virtually identical (and there is a clear difference with respect
to A(3)).

17 At the same time, no two locations that would be differently salient
in one direction by a Post-Game/Post-Story measure are differently salient in
the other direction by the corresponding measure in which participants do not
know the game. For the second part of Observation 3 note that within the Post-
Game Guessing measure, the qualitative pattern clearly is the same for hiders
and seekers, and the quantitative difference between the average estimates is 2%
at most.

4.2 Preliminaries: model denominations

Throughout this paper, I will work with a variety of models to account for be-
haviour. Table 2 is meant to systemize them sufficiently so that it is easier to
refer to the different models in the text. There are two main aspects on which
the models differ: the salience-pattern on which the model is based, and on the
hypothesized strategic thinking given this salience-pattern. In terms of the latter,
I will refer to three kinds of models: naïve responses driven by salience that do
not require any strategic thinking at all; equilibrium (eqm) models, potentially

17Wilcoxon matched-pairs signed-ranks tests support these observations: in the Guessing

Task, they yield p ≤ 0.001 for the comparisons of a participant’s A(4)-estimate with both her
A(1)-estimate and her A(3)-estimate, while for the comparison of her A(1)-estimate with her
A(3)-estimate, the test yields p = 0.883. In Post-Game Guessing, the same test yields p = 0.133
for the comparison betweenA(1) andA(4), and p < 0.001 for the comparisons betweenA(3) and
both A(1) and A(4).
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Model of strategic thinking

naïve Players choose according to salience, no strategic thinking involved.
eqm0 Assumes rationality and common knowledge thereof; no payoff perturbations.
eqm+ Assumes rationality and common knowledge thereof; there are payoff pertur-

bations that follow salience.
Lk Each level-k player best-responds to a level-(k − 1) player; when the best-

response is not unique, players randomise uniformly over all best-responses.
Lkmod Each level-k player best-responds to a level-(k − 1) player; when the best-

response is not unique, players randomise according to the best-responses’
salience; when a level-k′ player randomises, a level-k′+1 player best-responds
to a level-k′ player’s true mix.

Salience-pattern origin

hyp The salience pattern is inferred by model-fitting.
neut The salience pattern used is measured ‘neutrally’, that is, without participants

knowing about any of the games.
rate The salience pattern used stems from the Rating Task.
postRate The salience pattern used stems from Post-Story Rating.
postX The salience pattern used stems from Post-Game Guessing after participants

have played game X. X can be H&S for the hide-and-seek, coord for the co-
ordination, and discoord for the discoordination game.

Salience-pattern used

w[xy]z This postfix repeats the salience ranking used in the model. Locations w to
z are ordered by decreasing salience, square brackets indicate indifference. In
the example, location w is the most, and z the least salient location, while x
and y are equally salient locations.

indL0 This postfix means the model predictions use participants’ individual salience
measurements as their respective level-0.

avoid This additional postfix indicates that players are assumed to use a salience-
avoiding level-0. It is used only in two specifications provided in Appendix D
for completeness (see ftn. 23).

asym This additional postfix indicates that hiders (seekers) are assumed to use a
salience-avoiding(-loving) level-0. It is used only in two specifications pro-
vided in Appendix D for completeness (see ftn. 23).

Table 2: Systemization of the models used in this paper.

including salience-based payoff perturbations; and level-k (Lk)-models. In terms
of the salience-pattern used, I will refer to the hypothesised pattern in Craw-
ford and Iriberri (2007; hyp-

[

A(1)A(4)

]

B(2)A(3)), the data from the Picking-Task,
Guessing Task, and Beauty Contest (neut-B(2)

[

A(3)A(1)

]

A(4)), to the pattern
from the (Post-Story) Rating Task (rate-B(2)

[

A(3)A(1)A(4)

]

), and from differ-
ent Post-GameGuessing experiments (postX, where X is a wildcard referring to
the respective game). To give an example, Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

de-
notes a level-kmodel that is based on participants’ salience assessment as elicited
in a guessing task conducted after a hide-and-seek game.
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Seeker

A(1) B(2) A(3) A(4)

Hider

A(1)
1− e 0 + f 0 0− e

0 + e 1 + e 1 + e 1 + e

B(2)
0− e 1 + f 0 0− e

1− f 0− f 1− f 1− f

A(3)
0− e 0 + f 1 0− e

1 1 0 1

A(4)
0− e 0 + f 0 1− e

1 + e 1 + e 1 + e 0 + e

Table 3: The hide-and-seek game with payoff perturbations when A(1) and A(4)

are equally salient (adapted from Crawford and Iriberri, 2007, Figure 2).

4.3 Crawford and Iriberri’s (benchmark) equilibriummodel

with payoff perturbations

In the following section, I briefly present the model of an equilibrium with hard-
wired payoff perturbations CI use as a benchmark. CI start with the normal form
game and posit that players will have a preference for some locations which de-
pends on those locations’ salience. Hiders are assumed to dislike choosing salient
locations, while seekers are assumed to favour them. Here, I use the salience
measure postH&S-B(2)A(3)

[

A(1)A(4)

]

: assume hiders will obtain an extra ben-
efit (seekers incur a cost) of e when they choose one of the end locations and
a cost (a benefit) of f when they choose B(2). If A(1) and A(4) are jointly least
salient (as in postH&S-B(2)A(3)

[

A(1)A(4)

]

), we should expect e > 0 and f > 0.18

Table 3 shows the resulting normal form. Using rate-B(2)

[

A(3)A(1)A(4)

]

results
in the same normal form with the additional restriction that e ≡ 0.

Alternatively, we can base the game with payoff perturbations also on neut-
B(2)

[

A(3)A(1)

]

A(4). This specification fits the data worse and is therefore rele-
gated to Table C.3 in Appendix C.

4.4 Level-k models used

Just like CI base their model on the salience pattern hyp-
[

A(1)A(4)

]

B(2)A(3), we
can nowbase a level-kmodel on the elicited saliencemeasuresneut-B(2)

[

A(3)A(1)

]

A(4),

18Given CI posit that A(1) and A(4) are jointly most salient, they write down the model using
e′ ≡ −e and expect the maximum-likelihood estimation to yield e′ > 0. However, given CI do
not put restrictions on the signs of e and f (Eqm+-hyp-

[

A(1)A(4)

]

), both games are equivalent.
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postH&S-B(2)A(3)

[

A(1)A(4)

]

, and rate-B(2)

[

A(3)A(1)A(4)

]

.19 Columns three and
four of Table 4 present players’ predicted choices depending on their k-level ex-
emplarily for neut-B(2)

[

A(3)A(1)

]

A(4).
20

In addition, I suggest a slight modification of the model, denoted by Lkmod.
Mehta et al. (1994) argue that players who do not have any incentives to favour
one action over another will choose by the action labels’ salience. If a player
is indifferent between multiple actions, she does not have an incentive to favour
any of these actions. Hence, it would be very natural to assume that a player who
should be indifferent between multiple actions randomises over these actions ac-
cording to their relative salience rather than randomising uniformly as in stan-
dard game theory. This may happen for a variety of different reasons: different
people might be inherently attracted to different locations when no compelling
economic force acts on them; they might decide to choose ‘just anything’ from
among the options they are indifferent about, in a similar fashion as participants
in our Picking Task will have chosen one of the boxes when there was no rea-
son to favour any box over the other; or they might try to randomise uniformly,
but the attraction exerted by salience might unconsciously interfere with their
randomisation attempts. To incorporate this idea, I have to make an additional
assumption: a level-(i + 1) player is aware of the randomising level-i player’s
inability not to be attracted by salience, and best-responds to the resulting prob-
ability distribution.21 Columns five and six of Table 4 present the resulting choice
predictions exemplarily for postH&S-B(2)A(3)

[

A(1)A(4)

]

.

4.5 Model fit under the elicited salience patterns

Using the same data as CI, I perform a complete grid search over all possible type-
distributions (at the percent level), to find the level-k distribution under which
the data has the highest log-likelihood, using equation (2) in CI.22 Table 5 presents
the results. The focal models in Table 5 are CI’s preferred level-k model using

19As an alternative specification, CI estimate their models also for the salience pattern hyp-
B(2)

[

A(1)A(4)

]

A(3). Given that hyp-
[

A(1)A(4)

]

B(2)A(3) yields the better fit, however, they ac-
cept the latter as the pattern to base their preferred model on.

20The hide-and-seek data to be fitted is reproduced in Appendix A.
21The alternative assumption, inwhich higher-level players are unaware of salience-influences

on randomisation by lower-level players, is explored in the working-paper version Wolff (2014)
and yields a worse fit to the data.

22Note that I present this analysis primarily for comparability. By the logic of this paper,
I should restrict myself to a small subset of the data: CI use data from 6 different treatments
conducted by Rubinstein and co-authors; to use all 6, CI have to make assumptions of how to
convert the data from some treatments to make them comparable to the data from others. E.g.,
data from a treatment using “A”, “A”, “B”, and “A” is adapted by simply switching the two locations
in the middle. Whether this is appropriate based on the underlying salience structure is, again,
an empirical question. I refer to the analysis of Heinrich andWolff’s (2012) data in the right-hand
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k-level Lk-neut-B(2)

[

A(3)A(1)

]

A(4) Lkmod-postH&S-B(2)A(3)

[

A(1)A(4)

]

(frequency) box Hider Seeker Hider Seeker

L0 (π0) A(1) 0.21 0.21 0.19 0.19

B(2) 0.38 0.38 0.39 0.39

A(3) 0.35 0.35 0.24 0.24

A(4) 0.06 0.06 0.18 0.18

L1 (π1) A(1) 0 0 0.51 0.00

B(2) 0 1 0.00 1.00

A(3) 0 0 0.00 0.00

A(4) 1 0 0.49 0.00

L2 (π2) A(1) 1/3 0 0.31 0.51

B(2) 0 0 0.00 0.00

A(3) 1/3 0 0.39 0.00

A(4) 1/3 1 0.30 0.49

L3 (π3) A(1) 1/3 1/3 0.00 0.00

B(2) 1/3 0 0.62 0.00

A(3) 1/3 1/3 0.38 1.00

A(4) 0 1/3 0.00 0.00

L4 (π4) A(1) 0 1/3 0.25 0.00

B(2) 1 1/3 0.51 1.00

A(3) 0 1/3 0.00 0.00

A(4) 0 0 0.24 0.00

Total A(1) 0.21π0 + π2+π3
3

0.21π0 + π3+π4
3

0.19π0 + 0.51π1 + 0.31π2 + 0.25π4 0.19π0 + 0.51π2

B(2) 0.38π0 + π3
3

+ π4 0.38π0 + π1 + π4
3

0.39π0 + 0.62π3 + 0.51π4 0.39π0 + π1 + π4

A(3) 0.35π0 + π2+π3
3

0.35π0 + π3+π4
3

0.24π0 + 0.39π2 + 0.38π3 0.24π0 + π3

A(4) 0.06π0 + π1 + π2
3

0.06π0 + π2 + π3
3

0.18π0 + 0.49π1 + 0.3π2 + 0.24π4 0.18π0 + 0.49π2

Table 4: Players’ hide-and-seek choice probabilities under Lk-neut-B(2)

[

A(3)A(1)

]

A(4) and
Lkmod-postH&S-B(2)A(3)

[

A(1)A(4)

]

. The fraction of players of level i is denoted by πi.

the empirically-elicited salience patterns as level-0, Lk-neut-B(2)

[

A(3)A(1)

]

A(4),
Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

, and Lk-postH&S-B(2)

[

A(3)A(1)A(4)

]

, as well
as the modified model Lkmod-postH&S-B(2)A(3)

[

A(1)A(4)

]

.23 For comparison, I
include also estimates of the following seven benchmark models: choice accord-
ing to the empirically-elicited salience patterns (naïve-pick-B(2)

[

A(3)A(1)

]

A(4),
naïve-postH&S-B(2)A(3)

[

A(1)A(4)

]

, naïve-rate-B(2)

[

A(3)A(1)A(4)

]

); the stan-
dardmixed-strategyNash-equilibrium (eqm0); CI’s equilibriumwith “unrestricted”
payoff perturbations based on A(1) and A(4) being equally salient (eqm+-hyp-
[

A(1)A(4)

]

), as well as with ‘partially restricted’ perturbations (so as to match the

part of Table 5 for an analysis that does not rely on comparable assumptions.
23 CI’s alternative level-k specifications with an asymmetric level-0 (favouring salience for

seekers and avoiding it for hiders, Lk-X-asym) and with a salience-avoiding level-0 (Lk-X-avoid)
are included in Table D.4 in Appendix D.
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elicited salience pattern; eqm+-postH&S-B(2)A(3)

[

A(1)A(4)

]

);24 CI’s preferred
level-k model under their salience assumption (Lk-hyp-

[

A(1)A(4)

]

B(2)A(3)).
Readers may object that the salience-elicitation experiments where all con-

ducted in Germany, and therefore, in a different cultural environment than the
actual games. Furthermore, if people from different cultures have different per-
ceptions in terms of salience or if their salience-based strategic reasoning is
shaped culturally, we cannot conclude much from elicitating salience in one part
of the world to explain behaviour in another. To respond to this valid objection,
I also include the model estimates for German hide-and-seek data, taken from a
study by Heinrich and Wolff (2012).25

Observation 4. ‘Random clicking’ as shaped by salience patterns does not ex-
plain the data well.

Observation 4 rests on the fact that both the log-likelihoods and the mean
squared errors of all three naïve-specifications indicate a fit that is even worse
than the equilibrium prediction without payoff perturbations. This is important
because naïve, unstrategic responses are one of two explanations for hide-and-
seek data in the literature.

Main Result 1. Using the same data as Crawford and Iriberri (2007), the best
measured-salience-based estimates for their preferred level-k model fit the data
clearly worse than the estimates they derive for an equilibrium model with ‘un-
restricted’ payoff perturbations.

Main Result 1 can be verified by a look at the Table-5 columns reporting the
log-likelihoods, comparing specification Lk-neut-B(2)

[

A(3)A(1)

]

A(4) to specifi-
cation eqm+-hyp-

[

A(1)A(4)

]

.26 Note that it does not depend on the level-k dis-

24The estimates of eqm+-hyp-
[

A(4)

]

(no restriction on the sign of e) and eqm+-neut-

B(2)

[

A(3)A(1)

]

A(4)) are also included in Table D.4 in Appendix D. The estimate for eqm+-rate-

B(2)

[

A(3)A(1)A(4)

]

coincides with the one for naïve-postH&S-B(2)A(3)

[

A(1)A(4)

]

and hence
is omitted. For all eqm+-estimations, I use a two-step procedure: I first do a complete grid search
over all four parameters for−1 ≤ eH , fH , eS , fS ≤ 1 at the five-percent level, and then another
one at the percent level for the parameter space [eH − 0.1, eH + 0.1]× [fH − 0.1, fH + 0.1]×
[eS − 0.1, eS + 0.1]× [fS − 0.1, fS + 0.1].

25For comparability, I include only the data obtained under the original instructions. As
pointed out in footnote 22, this data has the additional advantage that it was obtained exclu-
sively under the ABAA-protocol, so that no further assumptions are needed of how to translate
salience patterns from other setups, such as the AABA-protocol.

26The result holds also for all other level-k variants presented in CI: both Lk-postH&S-
B(2)A(3)

[

A(1)A(4)

]

-asym and -avoid exhibit log-likelihoods of -1603 (RTH’s data) and -465
(HW’s data), cf. Table D.4 in Appendix D. Further, it holds for an alternative Lk-neut-
[

B(2)A(3)

]

A(1)A(4) specification that Hargreaves Heap et al. have suggested would fit the
Picking-Task data better (logL of −1643, RTH’s data, and of -471, HW’s data). I am not pre-
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RTH’s data HW’s data
Specification logL MSE logL MSE

Choices follow salience

naïve-pick-B(2)

[

A(3)A(1)

]

A(4) -1724 0.01271 -521 0.01654

naïve-postH&S-B(2)A(3)

[

A(1)A(4)

]

-1687 0.01647 -487 0.01662

naïve-rate-B(2)

[

A(3)A(1)A(4)

]‡
-1663 0.01226 -486 0.01525

Equilibrium models

eqm0 -1641† 0.00967† -484 0.01436

eqm+-hyp-
[

A(1)A(4)

]

-1562† 0.00006† -456 0.00109

(eH = −0.29, fH = 0.25, eS = −0.15, fS = 0.15)†

eqm+-postH&S-B(2)A(3)

[

A(1)A(4)

]

-1636 0.00909 -483 0.01467

(eH = 0.00, fH = 0.06, eS = 0.00, fS = 0.05)

CI’s preferred model

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) -1564† 0.00027† -456 0.00109

Lk-neut-B(2)

[

A(3)A(1)

]

A(4) -1616 0.00683 -476 0.01192

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-1635 0.00854 -485 0.01514

Lk-rate-B(2)

[

A(3)A(1)A(4)

]‡
-1629 0.00830 -480 0.01259

Modified level-k model

Lkmod-neut-B(2)

[

A(3)A(1)

]

A(4) -1597 0.00310 -457 0.00152

best ‘hump-shaped’ type distribution -458 0.00166

Lkmod-postH&S-B(2)A(3)

[

A(1)A(4)

]

-1570 0.00097 -458 0.00143

Lkmod-postRate-B(2)

[

A(3)A(1)A(4)

]‡
-1621 0.00734 -477 0.01150

† indicates the estimate is taken from CI’s paper. ‡ The better-performing specification from Rating Task and Post-

Story Rating.

Table 5: Log-likelihoods and mean squared errors of the maximum-likelihood
estimates of the indicated models. The first two data columns use the data from
Rubinstein, Tversky, and Heller’s collected studies (“RTH”), reproduced in Table
3 of Crawford and Iriberri (2007; “CI”). Columns three and four replicate the find-
ings using Heinrich and Wolff’s (2012; “HW”) data. The data from both studies
is provided in Appendix A.

tribution we use—that is, it holds even for the estimates yielding the highest
likelihoods. These distributions are depicted in Table 6.

Observation 5. Amaximum-likelihood estimate of the best-performing elicited-
salience-based variant of Crawford and Iriberri’s (2007) preferred model yields
a level-k distribution that is U- rather than hump-shaped. At the same time, it
indicates substantial levels of level-0.

The first part of Observation 5 follows from the row corresponding to spec-
ification Lk-neut-B(2)

[

A(3)A(1)

]

A(4) in Table 6. As was already stated, “[t]he
estimated distribution tends to be stable across games and hump-shaped,” (CI, p.
1734, emphasis added) which renders the estimate implausible. For the second

senting this alternative in the main text because the measured reaction times in my view suggest
B(2) and A(3) are salient to different degrees—which is supported by the Rating-Task data.
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RTH’s data HW’s data
Specification L0 L1 L2 L3 L4 L0 L1 L2 L3 L4

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) 0.00† 0.19† 0.32† 0.24† 0.25† 0.00‡ 0.12 0.37 0.29 0.22

Lk-neut-B(2)

[

A(3)A(1)

]

A(4) 0.38 0.14 0.00 0.48 0.00 0.59 0.14 0.08 0.19 0.00

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

0.09 0.28 0.01 0.62 0.00 0.70 0.07 0.00 0.23 0.00

Lk-rate-B(2)

[

A(3)A(1)A(4)

]

0.56 0.00 0.44 0.00 0.00 0.61 0.00 0.33 0.06 0.00

Lkmod-postH&S-B(2)A(3)

[

A(1)A(4)

]

0.00 0.20 0.36 0.44 0.00 0.00 0.22 0.28 0.50 0.00

† indicates the estimate is taken from CI’s paper. ‡ As CI do not rely on any specific L0-pattern, it is not clear to me how
to endogenise π0 without including yet another two parameters (p and q in their paper). As I am reluctant to do so, I
maintain π0 ≡ 0 for their preferred model.

Table 6: Level-k distributions of the maximum-likelihood estimates in Table 5.
The first four data columns use the data from Rubinstein, Tversky, and Heller’s
collected studies (“RTH”), reproduced in Table 3 of Crawford and Iriberri (2007;
“CI”). Columns five to eight replicate the findings using Heinrich and Wolff’s
(2012; “HW”) data.

part of Observation 5, note that the model estimates the level-0 fraction to be
38% or even higher.

Main Result 2. The modified level-k model is able to fit the data substantially
better compared to Crawford and Iriberri’s (2007) level-k variant when the latter
also is based on empirically-elicited salience patterns. The best fit to the data—
being almost as good as the fit of the equilibriumwith unrestricted perturbations—
is achieved by the model in which level-0 is given by the data from the Post-

Game Guessing task.

The first claim rests on a comparison of the log-likelihoods of Lkmod-postH&S-
B(2)A(3)

[

A(1)A(4)

]

in Table 5 to those of Lk-neut-B(2)

[

A(3)A(1)

]

A(4), Lk-postH&S-
B(2)A(3)

[

A(1)A(4)

]

, and Lk-rate-B(2)

[

A(3)A(1)A(4)

]

.27 For the second, note that
the log-likelihood of Lkmod-postH&S-B(2)A(3)

[

A(1)A(4)

]

in Table 5 is very close
to that of eqm+-hyp-

[

A(1)A(4)

]

in the same table. Furthermore, the estimated
level-distributions in Table 6 indicate that the best-fitting modified model does
exhibit a—albeit skewed—hump-shaped levels distribution. Observation 6 points
out a likely reason for the good performance of the Lkmod-postH&S-B(2)A(3)

[

A(1)A(4)

]

model:

Observation 6. Themeasured salience pattern influences behaviour directly, on
top of being the anchor for players’ belief cascades.

Observation 6 emphasises the fact that the salience patterns that I elicited
and plugged into the level-k models capture an important part of behaviour.

27The claim also holds truewith respect to CI’s other level-k variants, cf. Table D.4 in Appendix
D.
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In CI’s preferred model, salience enters only through virtual level-0 players;
when basing themodel on our saliencemeasures, however, virtually all estimates
(and particularly, the best-performing one) indicate a large fraction of—salience-
guided—level-0 play. On the other hand, when salience enters the randomisa-
tion of otherwise indifferent players, as in the modified model Lkmod-postH&S-
B(2)A(3)

[

A(1)A(4)

]

, allowing for level-0 in the estimation has no additional ex-
planatory power.

Finally, note that CI’s estimation of the equilibriumwith perturbations (eqm+-
hyp-

[

A(1)A(4)

]

) also suggests a salience pattern that exhibits A(3) as the least
salient alternative (eH , eS < 0, fH , fE > 0). This would imply that either all
of our empirical estimates of salience are wrong or CI’s benchmark equilibrium
model with payoff perturbations rests on implausible assumptions, too.

Observation 7. Estimates for the equilibrium models with payoff perturbations
under the constraint that the payoff perturbations follow any of the elicited
salience-pattern candidates have a similarly bad model fit as the re-estimated
CI models.

This observation follows from looking at the row in Table 5 pertaining to
specification eqm+-postH&S-B(2)A(3)

[

A(1)A(4)

]

, and comparing the log-likelihood
to those of the specifications Lk-neut-B(2)

[

A(3)A(1)

]

A(4) and Lk-postH&S-
B(2)A(3)

[

A(1)A(4)

]

.28 Note that Observations 4-7 also hold for the data from
Heinrich andWolff (2012), as can be verified by looking at the respective columns
in the right-hand part of Tables 5 and 6. The similarity of the estimated parame-
ters and of the models’ relative likelihoods suggest that the hide-and-seek game
is played in a similar fashion in Stanford, Tel Aviv, and Konstanz.

4.6 Elicited-salience-based level-k in (dis-)coordination games

Hargreaves Heap et al. (2014) show that it is not possible to find a common level-0
that would allow to predict simultaneously behaviour in hide-and-seek, coordi-
nation, and discoordination games played on the same action sets with the same
labels. In a comment on their work, Crawford (2014; p.5) argues that level-k is the
wrong model to account for behaviour in coordination games, given in coordina-
tion games “both intuition and existing evidence point toward ‘team reasoning’”
instead. However, if we take out coordination games fromHargreaves Heap et al.
(2014), we can no longer draw the conclusions they draw. Furthermore, even if
we did not exclude the coordination-game data, allowing for a different level-0 in
each game could be acceptable in principle, given the game description seems to

28The same holds true for eqm+-rate-B(2)

[

A(3)A(1)A(4)

]

(estimate as for eqm+-postH&S-

B(2)A(3)

[

A(1)A(4)

]

) and for eqm+-neut-B(2)

[

A(3)A(1)

]

A(4), cf. Table D.4 in Appendix D.

17



4 RESULTS

A(1) B(2) A(3) A(4)

postCoord Task (72 participants)
average estimated relative click frequency 19 50 18 14

postDiscoord Task (72 participants)
average estimated relative click frequency 20 37 24 19

Table 7: Salience assessments of the four boxes denoted by “A”, “B”, “A”, and “A”.
The postCoord Task is the Guessing Task after participants played the coor-
dination game, the postDiscoord Task the same task after participants played
the discoordination game, again before any feedback was given.

have a (limited) influence participants’ perceptions of salience (Observation 3).
Yet, this needs to be done in an objective manner. For this purpose, I repeat the
salience-elicitation measure from the best-performing model Lkmod-postH&S-
B(2)A(3)

[

A(1)A(4)

]

. That is, I conduct another Guessing Task after participants
have played the coordination (postCoord task; included for completeness) or
discoordination game (postDiscoord task), respectively, without feedback.29

Table 7 shows the results.

Observation 8. The postCoord and postDiscoord Tasks confirm Observa-
tion 3: the game description affects participants’ estimate of what people in a
non-strategic situation will regard as salient, but it does not change the pattern
dramatically. In particular, no additional salience pattern is observed.

Observation 8 becomes obvious from Table 7 by focusing on the estimates
for locations B(2) and A(4). While in the postDiscoord Task, the latter is vir-
tually identical to players’ estimate on A(1), there is a clear difference in the
postCoord Task.30 At the same time, the average estimate on B(2) is clearly
higher in the postCoord Task compared to the postDiscoord Task.31 Note
further that the salience-ranking of the postCoord Task is the same as neut-
B(2)

[

A(3)A(1)

]

A(4), and that the ranking of the postDiscoord Task is the same
as postH&S-B(2)A(3)

[

A(1)A(4)

]

.
Given the above eliticed salience patterns, we can now predict behaviour in

the coordination and discoordination games. To do so, we use the level-k distri-

29All procedures as in Post-Game Guessing. No participant had participated in any other of
the experiments described in this paper.

30Two-sided Wilcoxon matched-pairs signed-ranks tests yield p = 0.174 and p = 0.001,
respectively.

31A two-sided Wilcoxon Mann-Whitney test yields p < 0.001.
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butions estimated in Section 4.5.32 Table 8 reports the predictions of Crawford
and Iriberri’s preferredmodel Lk-hyp-

[

A(1)A(4)

]

B(2)A(3) and themodifiedmodel
based on the postCoord-Task and postDiscoord-Task data, respectively, next
to the choices in the coordination and discoordination games proper.

A(1) B(2) A(3) A(4) mse

Coordination game (72 participants)
Choices (in %) 18 69 11 1

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3)

Prediction without errors 50 0 0 50 0.20768
Lkmod-postCoord-B(2)

[

A(1)A(3)

]

A(4)

Prediction without errors 0 100 0 0 0.03518

Lkmod-postCoord-indL0
Prediction of ML estimate† (π0 = 0.44) 14 66 13 7 0.00169

Discoordination game (72 participants)
Choices (in %) 15 26 40 18

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3)

Prediction without errors 28 22 22 28 0.01523
Lkmod-postDiscoord-B(2)A(3)

[

A(1)A(4)

]

Prediction without errors 14 44 28 14 0.01213

Lkmod-postDiscoord-indL0
Prediction of ML estimate (π0 = 0.91) 20 37 24 19 0.01003

†Participant 49 excluded in the estimation (choice of a 0-probability event).

Table 8: Choices in and predictions for the coordination and discoordination
games. The predictions rest on the estimated fractions of level-k types reported
in Table 5. For the modified model allowing for a heterogeneous level-0 (-indL0),
I report the maximum-likelihood estimate, where π0 is the estimated fraction of
level-0 players.

Main Result 3. Neither Crawford and Iriberri’s (2007) preferred model nor the
modified variant proposed in this paper predicts well the coordination-game and
discoordination-game data. The former predicts poorly even qualitatively in both
the coordination and the discoordination games, while the latter predicts the
qualitative pattern in the coordination game but not in the discoordination game.

To see this, note that the modal choice in the coordination game isB(2), while
CI’s preferred model Lk-hyp-

[

A(1)A(4)

]

B(2)A(3) would predict that only players

32For the modified level-k model, I use the estimate based on Heinrich and Wolff’s (2012) data
because that data comes exclusively from the A-B-A-A setup.
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making an errorwould choose this location. Similarly, Lk-hyp-
[

A(1)A(4)

]

B(2)A(3)

with a level-k distribution as estimated in the hide-and-seek game predicts that
in the discoordination game, most participants choose A(1) and A(4), when in
fact, the modal choice is A(3) (and A(1) and A(4) are chosen least often). The
modified model predicts too concentrated a choice distribution in the coordi-
nation game (all choices vs. 69% on B(2)), and the wrong modal choice in the
discoordination game (44% on B(2) vs. 40% on A(3), while correctly predicting
low choice-frequencies for A(1) and A(4)).

Main Result 3 establishes that none of the level-k models can account for the
data of all three experiments even when we acknowledge that the game descrip-
tions change participants’ salience perceptions. What is noteworthy is that the
coordination-game data could easily be reconciled with a level-k model with er-
rors or positive fractions of level-0 play—contrary to the conjecture of Crawford
(2014)—but the discoordination-game data cannot. Yet, it is the discoordination
game where level-k should apply. However, also note that up to now, we stuck
to the assumption that all players have the same idea of what is salient. This
is empirically wrong. Looking at the postDiscoord Task as an example, only
60% of the participants estimate thatB(2) is clicked on most often in the Picking
Task, followed by 19% for A(3) and 10% for each A(1) and A(4). Taking this seri-
ously calls for a model that allows every player to have their own level-0. I look
at this possibility exemplarily for the coordination and discoordination games in
the following section.

4.7 Level-k based onparticipants’ individual salience assess-

ments

In the final lines of each part in Table 8, I report maximum-likelihood estimates
for the modified level-k model when participants use their respective own indi-
vidual postCoord/postDiscoord Task responses as level-0.33 To give an exam-
ple, assume that a participant in the postDiscoord Task estimates responses in
the Picking Task to follow the distribution 10%, 45%, 15%, and 30% forA(1),B(2),
A(3), and A(4), respectively. In that case, the prediction for the participant’s be-
haviour in the discoordination game would be that she chooses A(1) for certain
in case she is level-1 or level-3, and that she chooses B(2), A(3), and A(4) with
probabilities 1/2, 1/6, and 1/3, respectively, in case she is level-2 or level-4. The
maximum-likelihood estimate for the coordination game yields 44% of level-0
and 56% of levels 1 and above, while the estimate for the discoordination game

33Note that for the coordination game, Lkmod-postCoord-indL0 makes the same predictions
as a Lk-postCoord-indL0model. For the discoordination game, the two differ only slightly (and
not at all in terms of the estimated level-k distributions).
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yields 91% level-0, a combined 1% of level-1 and level-3 players and a combined
8% of level-2 and level-4 players.

Main Result 4. Basing the level-kmodel on individual post-game guessing-task
estimates as L0 improves the model’s fit to the coordination-game data. Yet, the
maximum-likelihood estimate even of this model does not produce a prediction
that would capture the essential features of the discoordination-game data.

The first part of Main Result 4 results from comparison of mean squared pre-
diction errors in the last column of Table 8. The second part results from the fact
that the predicted choice distribution also of the model Lkmod-postCoord-indL0
predicts the modal choice to be B(2) rather than A(3).

34

5 Summary and discussion

The data gathered by Rubinstein et al. in their hide-and-seek experiments pose
a serious challenge to Nash-equilibrium as a descriptive theory of behaviour. Up
to today, two explanations have been proposed. Rubinstein and Tversky (1993;
p. 402) claim that participants would fail to reason strategically and “[employ] a
naïve strategy (avoiding the endpoints), that is not guided by valid strategic rea-
soning.” If that were so, we might expect them to choose similarly to what they
would pick if they had to click on any of the boxes without there being a game:
according to the options’ salience.35 Observation 4 establishes that salience-
clicking is a bad predictor for aggregate behaviour in hide-and-seek games.

A second explanation has been proposed by Crawford and Iriberri (2007).
They propose a level-k model that is based on salience and convert Rubinstein
et al.’s account of what is salient into latent model parameters. They estimate the
qualitative salience pattern to be such that “central A” is the least salient location,
followed by “B”, leaving the two “end As” as the most salient locations. Based on
this salience pattern, Crawford and Iriberri (2007) present a model that fits the
data almost as well as a benchmark model based on hard-wired payoff perturba-
tions, and that outperforms any othermodel they study in terms of out-of-sample
predictions. However, in all six salience-elicitation experiments I conducted, “B”
turned out as the most salient location, while “central A” never was the (sin-
gle) least salient location (Observations 1 and 2). The natural question to be

34χ2-tests on the data under the hypothesis that the data stems from the model’s predicted
distribution yield p ≈ 0.21 for the coordination game, and p = 0.008 for the discoordination
game.

35Of course, “[in]valid strategic reasoning” might refer to other things apart from choice by
salience. Yet, as long as we are not told more than the fact that participants avoid the endpoints,
we are talking about a description of the data, rather than about a testable explanation for it.
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answered was then whether a level-k model based on the empirically-elicited
salience patterns would do equally well as a descriptor/predictor of behaviour.
Main Result 1 and Observation 5 clearly show this is not the case, and that
the best-fitting estimates, on top of having a poor fit to the data, exhibit level-k
type distributions that are implausible. Coincidentally, the benchmark equilib-
riummodels with salience-based payoff perturbations fit the data similarly badly
when based on the empirically-elicited salience patterns (Observation 7).

Does this mean a level-k model cannot be used to account for behaviour in
hide-and-seek games at all? The answer is no. By following an argument by
Mehta et al. (1994) andmodifying themodel such that a level-k player will choose
according to the salience of a location (consciously or not) whenever the player
would be indifferent under pure payoff considerations, I obtain a model that has
a fit of similar order as the best-performing models presented by Crawford and
Iriberri (2007; Main Result 2). Observation 6 lends empirical support to the
idea behind the modification: when otherwise-indifferent players are assumed
to mix uniformly, the model estimates show a large fraction of salience-guided
level-0 behaviour; once these players mix according to salience, the estimated
fraction of level-0 play is nill. The result is a better-fitting model that makes use
of one parameter less.

Hargreaves Heap et al. (2014) have participants play a coordination and a
discoordination game on the same action-set frames as the hide-and-seek game.
Using this approach, they show at a general level that calibrating salience and the
type distributions on hide-and-seek game data to predict behaviour in coordina-
tion and discoordination games is doomed to fail. However, to rebut the salience-
based level-k model, they need to assume that the model applies to all three
types of games. Crawford (2014) contests this assumption, arguing that team-
reasoning rather than level-k should be applied to coordination games. Also,
Observations 3 and 8 suggest that players’ salience perception may change to
some (limited) degree across different games with the same action-set frames.
In this light, the question of whether a salience-based level-k model can explain
behaviour in different games remains unanswered. Main Result 3 establishes
that the conclusion Hargreaves Heap et al. draw is correct even if we restrict
our focus to the discoordination game and account for a changing level-0: in this
game, Crawford and Iriberri’s preferred model predicts behaviour badly. When
I subject the modified level-k model based on empirical salience measures to the
same test, it does better, but it still clearly fails to explain the data.

Up to this point, all authors including myself have assumed that at least
within each game, there is a unique level-0 that is the same for all players.36 A

36A notable exception is Burchardi and Penczynski (2014), who allow for different guesses
about the behaviour of non-strategically-acting players in a beauty-contest game.
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closer look at the data from the experiments presented in this study reveals this
assumption is unwarranted, too. Data from guessing-task experiments are by no
means homogeneous in terms of what participants expect others to choose in a
Picking Task. Therefore, we need to analyse behaviour taking into account het-
erogeneous salience perceptions. I do this exemplarily using the discoordination-
game (and coordination-game) data. Main Result 4 shows that basing a level-k
model on individual post-game guessing-task estimates as level-0 can improve
the model’s fit to the data. Unfortunately, it also shows that a heterogeneous
level-0 still does not allow to understand the data from the discoordination game.

Beyond a doubt, the results presented here pose a serious challenge to level-
k theory. In this paper, I have been rather lenient with the theory, by allow-
ing also higher-order salience to be a level-0 candidate as well as by adding a
(plaubible) model modification that was able to accommodate the hide-and-seek
data.37 Nonetheless, even under these forgiving conditions, level-k cannot ac-
count for discoordination-game data even with a heterogeneous level-0. Unless
level-k theory can be modified in a way that provides an explanation also for
the results presented here, we should be hesitant to accept a level-k explanation
for behaviour in hide-and-seek games. And yet, we need to bear in mind that
there is no other model at hand that can explain the recurrent features of the
hide-and-seek data. Also note that studies like Burchardi and Penczynski (2014)
find empirical support for level-k-like reasoning in a clever design that allows to
observe participants’ reasoning rather than only their choices. What do the re-
sults mean, then? They may mean that only a subset of participants really follow
level-k reasoning. For the remaining (majority of the) participants, we may have
to look for different models to understand their behaviour.
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APPENDIX A HIDE-AND-SEEK DATA

Appendix A Hide-and-seek data

Table A.1: Table 1 from Crawford and Iriberri (2007).

Heinrich and Wolff (2012) A B A A

Hider (208) 15 percent 29 percent 30 percent 25 percent
Seeker (141) 9 percent 22 percent 51 percent 18 percent

Table A.2: Hide-and-Seek game data from Heinrich and Wolff (2012)

Appendix B Translated instructions

A Picking Task

Please choose one of the following four boxes and click on it!
2A 2B 2A 2A
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APPENDIX B TRANSLATED INSTRUCTIONS

B Guessing Task [Post-Game Guessing]

[Before this experiment, w]e have asked 405 students at the University of Kon-
stanz in a questionnaire to choose one out of four boxes that were [also] marked
as follows: A, B, A, A. [The 405 students did not know anything about you or
about the game that you just played.]

It is now your task to estimate as exactly as possible, what percentage of the
students has chosen the respective boxes.

The closer your estimate is to the data we gathered, the more you can earn
in this part of the experiment.

Details: in case your estimate does not deviate for any of the boxes by more
than 5% from the true value, you receive 10 points; if the estimate deviates for
at least one box by more than 5%, but for none by more than 10%, you receive 5
points; if the estimate deviates for at least one box bymore than 10%, but for none
by more than 20%, you receive 2 points, and otherwise you receive no points at
all.38

Please enter here your estimate with respect to the relative frequencies of how
often the four boxes were ticked in the questionnaire (to do so, click on the dia-
gramme at the respective spots):

As a reminder, the question was: “please choose one of the following four boxes
and click on it!”

3810 points were equal to 0.50 Euros.
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C Beauty Contest

Another beauty contest: [this classroom experiment was conducted right after
discussing the p−beauty contest and level-k theory]

The question: which is the most salient box, which are the second, third, and
fourth most salient boxes?

Among those stating the modal ordering, a prize of 12 Euros will be raffled off.
Use A1, B2, A3, and A4 to indicate the options.

D Rating Task [Post-Story Rating]

[Post-Story Rating: Consider the following game for two players:
One player owns a prize that he can hide in one of four aligned boxes. The

boxes are marked as follows: A, B, A, A. The other player can search for the prize
by opening one (and only one) of the four boxes, to take possession of the prize.]

In the following, wewould like to know fromyou howoptically salient/conspicuous
you find the [Post-Story Rating: respective] four boxes [Rating Task: de-
picted below].
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APPENDIX C ALTERNATIVE PAYOFF-PERTURBED GAME

Appendix C Alternative payoff-perturbed game

Here, I present the game with hard-wired payoff perturbations whenA(4) is least
salient without A(1). Under the additional simplifying assumption that A(1) and
A(3) are equally salient, we obtain the game shown in Table C.3.39 Again, we
should expect e > 0 and f > 0.

Seeker

A(1) B(2) A(3) A(4)

Hider

A(1)
1 0 + f 0 0− e

0 1 1 1

B(2)
0 1 + f 0 0− e

1− f 0− f 1− f 1− f

A(3)
0 0 + f 1 0− e

1 1 0 1

A(4)
0 0 + f 0 1− e

1 + e 1 + e 1 + e 0 + e

Table C.3: The hide-and-seek game with payoff perturbations when A(4) is the
single least salient location and A(1) and A(3) are equally salient.

Appendix D Full version of estimation-result Ta-

bles 5 and 6

On the next page, I include the Table-5 equivalent containing all estimated mod-
els, as well as the corresponding level-k distributions, including those reported
in Table 6.

39This assumption can be based on the observations from the Guessing Task and, arguably,
from the locations’ average ranks in the Beauty Contest.
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Specification Data L0 L1 L2 L3 L4 logL MSE

Choices follow salience

naïve-neut-B(2)

[

A(1)A(3)

]

A(4) rth – – – – – -1724 0.01271

naïve-postH&S-B(2)A(1)

[

A(3)A(4)

]

rth – – – – – -1687 0.01647

naïve-rate-B(2)

[

A(3)A(1)A(4)

]‡ rth – – – – – -1663 0.01226

Equilibrium models

eqm0 rth – – – – – -1641† 0.00967†

eqm+-hyp-[A(1)A(4)] rth – – – – – -1562† 0.00006†

(eH = 0.29, fH = 0.25, eS = 0.15, fS = 0.15)
eqm+-postH&S-B(2)A(3)

[

A(1)A(4)

]

rth – – – – – -1636 0.00909

(eH = 0.00, fH = 0.06, eS = 0.00, fS = 0.05)
eqm+-hyp-

[

A(1)A(3)

]

rth – – – – – -1608 0.00744

(eH = 0.08, fH = 0.08, eS = 0.17, fS = 0.12)
eqm+-neut-B(2)

[

A(1)A(3)

]

A(4) / -rate-B(2)

[

A(1)A(3)A(4)

]

rth – – – – – -1636 0.00909

(eH = 0.00, fH = 0.06, eS = 0.00, fS = 0.05)

CI’s preferred model

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) rth 0.00 0.19† 0.32† 0.24† 0.25† -1564† 0.00027†

Lk-neut-B(2)

[

A(1)A(3)

]

A(4) rth 0.38 0.14 0.00 0.48 0.00 -1616 0.00683

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

rth 0.09 0.28 0.01 0.62 0.00 -1664 0.01213

Lk-rate-B(2)

[

A(3)A(1)A(4)

]‡ rth 0.56 0.00 0.44 0.00 0.00 -1629 0.00830

CI’s model with asymmetric L0§

Lk-neut-B(2)

[

A(1)A(3)

]

A(4)-asym rth – 0.00 0.15 0.64 0.21 -1632 0.00782

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-asym rth – 0.08 0.26 0.32 0.34 -1603 0.00556

Lk-rate-B(2)

[

A(3)A(1)A(4)

]

-asym rth – 0.58 0.21 0.00 0.21 -1636 0.00909

CI’s model with salience-avoidingL0§

Lk-neut-B(2)

[

A(1)A(3)

]

A(4)-avoid rth – 0.00 0.79 0.06 0.15 -1632 0.00782

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-avoid rth – 0.12 0.46 0.20 0.22 -1603 0.00556

Lk-rate-B(2)

[

A(3)A(1)A(4)

]

-avoid rth – 0.21 0.00 0.21 0.58 -1636 0.00909

Modified level-k model

Lkmod-neut-B(2)

[

A(3)A(1)

]

A(4) rth 0.48 0.12 0.14 0.26 0.00 -1597 0.00310

Lkmod-postH&S-B(2)A(3)

[

A(1)A(4)

]

rth 0.00 0.20 0.37 0.43 0.00 -1570 0.00097

Lkmod-postRate-B(2)

[

A(3)A(1)A(4)

]‡ rth 0.22 0.00 0.65 0.01 0.12 -1621 0.00734

Choices follow salience

naïve-neut-B(2)

[

A(1)A(3)

]

A(4) hw – – – – – -521 0.01654

naïve-postH&S-B(2)A(3)

[

A(1)A(4)

]

hw – – – – – -487 0.01662

naïve-rate-B(2)

[

A(3)A(1)A(4)

]‡ hw – – – – – -486 0.01525

Equilibrium models
eqm0 hw – – – – – -484 0.01436
eqm+-hyp-[A(1)A(4)] hw – – – – – -456 0.00109

(eH = 0.38, fH = 0.29, eS = 0.10, fS = 0.02)
eqm+-postH&S-B(2)A(3)

[

A(1)A(4)

]

hw – – – – – -483 0.01467

(eH = 0.00, fH = 0.04, eS = 0.00, fS = −0.05)
eqm+-hyp-

[

A(1)A(3)

]

hw – – – – – -480 0.01712

(eH = 0.12, fH = 0.08, eS = −0.03, fS = −0.06)
eqm+-neut-B(2)

[

A(1)A(3)

]

A(4) / -rate-B(2)

[

A(1)A(3)A(4)

]

hw – – – – – -482 0.01485

(eH = 0.00, fH = 0.04, eS = −0.03, fS = −0.06)

CI’s preferred model

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) hw 0.00 0.12 0.37 0.29 0.22 -456 0.00110

Lk-neut-B(2)

[

A(1)A(3)

]

A(4) hw 0.59 0.14 0.08 0.19 0.00 -476 0.01192

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

hw 0.70 0.07 0.00 0.23 0.00 -485 0.01496

Lk-rate-B(2)

[

A(3)A(1)A(4)

]‡ hw 0.61 0.00 0.33 0.06 0.00 -480 0.01259

CI’s model with asymmetric L0§

Lk-neut-B(2)

[

A(1)A(3)

]

A(4)-asym hw – 0.08 0.10 0.65 0.17 -484 0.01320

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-asym hw – 0.19 0.09 0.50 0.23 -465 0.00640

Lk-rate-B(2)

[

A(3)A(1)A(4)

]

-asym hw – 0.49 0.29 0.00 0.22 -483 0.01367

CI’s model with salience-avoidingL0§

Lk-neut-B(2)

[

A(1)A(3)

]

A(4)-avoid hw – 0.00 0.75 0.07 0.18 -484 0.01320

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-avoid hw – 0.03 0.56 0.17 0.24 -465 0.00639

Lk-rate-B(2)

[

A(3)A(1)A(4)

]

-avoid hw – 0.29 0.00 0.22 0.49 -483 0.01367

Modified level-k model

Lkmod-neut-B(2)

[

A(3)A(1)

]

A(4) hw 0.30 0.18 0.14 0.38 0.00 -457 0.00152

best ‘hump-shaped’ type distribution hw 0.26 0.18 0.18 0.38 0.00 -458 0.00166

Lkmod-postH&S-B(2)A(3)

[

A(1)A(4)

]

hw 0.00 0.23 0.28 0.49 0.00 -458 0.00143

Lkmod-postRate-B(2)

[

A(3)A(1)A(4)

]‡ hw 0.55 0.00 0.37 0.07 0.01 -477 0.01150

†indicates the estimate is taken from ci’s paper. ‡ Better-performing specification from Rating Task and Post-Story

Rating. §π0 ≡ 0 imposed.

Table D.4: Full version of Tables 5 and 6 combined: maximum-likelihood esti-
mates, log-likelihoods, andmean squared errors of the fit for the differentmodels,
using the data from Rubinstein, Tversky, and Heller’s collected studies (“rth”),
reproduced in Table 3 of Crawford and Iriberri (2007; “ci”). The table’s lower half
replicates the upper-half findings using Heinrich and Wolff’s (2012; “hw”) data.
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