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Abstract:

Crawford and Iriberri (AER, 2007) show how a level-k model can be based on
salience to explain behaviour in games with distinctive action labels, taking hide-
and-seek games as an example. This study presents four different experiments
designed to measure salience. When based on any of these empirical salience
measures, their model does not explain behaviour. Modifying the model such
that players follow salience when payoffs are equal, the model fits hide-and-seek
data well. However, neither the original nor the modified model account for
data from a discoordination game. This holds true even when incorporating the
heterogeneity in measured salience perceptions.

Keywords: ABAA, hide and seek, cognitive hierarchy, strategic reasoning,
saliency.
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1 Introduction

Matching-pennies games and their generalisation to multiple actions, dubbed
hide-and-seek games, have been well-studied games in game theory from its
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1 INTRODUCTION

very beginning (cf., e.g., von Neumann, 1953). Real-life examples abound, from
markets in which the brand leader will continue to have the largest revenues
as long as it can match the rival products’ features, to obvious applications in
military, police, and intelligence work. While the standard game-theoretic so-
lution to the generic games is straightforward, experiment participants do not
seem to act according to this prediction (see Eliaz and Rubinstein, 2011, for a
repeated matching-pennies game, and Rubinstein and Tversky, 1993, as well as
Rubinstein, Tversky and Heller, 1996, for hide-and-seek games).

In a well-noted paper, Crawford and Iriberri (2007; henceforth CI) show how
a salience-based level-k model can account for the observed patterns in hide-
and-seek games if we assume a specific salience pattern. Current work by Harg-
reaves Heap, Rojo Arjona and Sugden (2014) shows that a level-k model cannot
account simultaneously for data from hide-and-seek games, coordination games,
and discoordination games all played on the same action-set frame if we assume
the same salience pattern for all games. I provide empiciral measures of the
salience pattern and argue that both assumptions are empirically inadequate.
None of four salience measures is in line with CI’s assumption on salience, and
the evidence suggests that the game description changes participants’ salience
perceptions.

The important question ensuing from the findings on participants’ salience
measures is what they mean for the proposed level-k model. I show that the pro-
posed model no longer predicts behaviour well when based on empirical salience
measures. A simple and plausible modification restitutes the remarkable fit of
CI’s level-k model. However, neither the original model nor its modification can
explain data from discoordination games. Most importantly, I show that a level-k
model based on empirical salience does not account for the discoordination-game
data evenwhenwe account for the fact that there is heterogeneity in participants’
elicited salience perceptions (so that every participant may have their own level-
0).

Before I say more about the model and its modification, let me briefly present
the hide-and-seek game in its archetype version. A “hider” possesses a “treasure”
she can hide in one of four boxes, labelled “A”, “B”, “A”, and “A”. A “seeker” may
open one of these boxes. If he chooses the same box as the hider, the seeker
gains the treasure, otherwise the hider keeps it. This multiple-action matching-
pennies game obviously has a unique Nash equilibrium in mixed strategies, with
both the hider and the seeker choosing each box with 25% probability. The typ-
ical distribution observed in experimental implementations of the game, on the
other hand, has a strong mode on “central A” for both roles, being even more
pronounced for seekers than for hiders (which leads to a substantial seeker-
advantage relative to equilibrium).

Let us now turn to how a level-k model may account for the above pattern.

2



1 INTRODUCTION

Level-k models have a very simple structure. Each k-type, k > 0, believes all
her opponents are of level-(k − 1) and best-responds to this belief.1 The two
crucial elements to close the model are the specifications of level-0—which is
assumed to exist in the players’ minds only—and of the type distribution. For
the latter, CI argue that “[t]he estimated distribution tends to be stable across
games and hump-shaped,” (p. 1734) while the level-0 specification is the central
innovation of their paper. Instead of assuming the traditional uniform mixture
over all possible actions, CI ‘translate’ Rubinstein and co-authors’ statements on
salience into (latent) numeric variables to use them as level-0 in their model. In
CI’s words,

“[t]he ‘B’ location is distinguished by its label, and so is salient
in one of Thomas Schelling’s (1960) senses. And the two ‘end A’ lo-
cations, though not distinguished by their labels, may be inherently
salient, as RT [Rubinstein and Tversky, 1993] and RTH [Rubinstein,
Tversky, and Heller, 1996] argue, citing Nicholas Christenfeld (1995).
As RT note, these two saliencies interact to give the remaining loca-
tion, ‘central A,’ its own brand of uniqueness as ‘the least salient
location.’ ” (p. 1732).

CI translate the last sentence as implying that “central A” really is “the least
salient location,” thus being chosen by a level-0 player least often. I argue that
this need not be true. If “central A” has “its own brand of uniqueness”, it is not
clear a priori how it should be ranked in terms of salience. The evidence pre-
sented in this paper suggests “central A” is in fact more salient than “final A”,
whereas it is unclear how it compares to “first A” in terms of salience.

CI deliberately keep the model clear of salience influences except for its role
in determining level-0. However, one could argue that when players are indif-

ferent between various actions, they will act in the same way as if they were
given no incentives at all. Following the argument of Mehta, Starmer and Sug-
den (1994), we should expect those players’ actions to be shaped by salience. In
section 3.5, I introduce this small but important twist and show that the revised
model has a fit of comparable order as the best models in Crawford and Iriberri
(2007). At the same time, it leads to a more plausible estimation of the level-k
distribution compared to CI’s model when constrained to an empirically-elicited

1This type of model was introduced by Stahl and Wilson (1994, 1995) and Nagel (1995),
and later adapted by Costa-Gomes, Crawford and Broseta (2001). It is closely-related to other
cognitive-hierarchy models like that proposed by Ho, Camerer and Weigelt (1998) and refined in
Camerer, Ho and Chong (2004). For a discussion of both approaches, cf. Crawford, Costa-Gomes
and Iriberri (2013). Note that Crawford and Iriberri (2007) allow for errors in their model. How-
ever, given the estimated error rate for the models under the assumption of uniform errors is
zero, I abstract from errors for the time being. None of the findings hinges on this simplification.
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level-0. Nonetheless, neither the modified nor CI’s original model can account
for data from a discoordination game played on an ‘A-B-A-A landscape’. This
continues to hold true when I relax the assumption that all participants act on
the same salience perception and allow for a heterogeneous level-0.

This paper contributes to a growing literature that finds empirical support
for level-k-like thinking in a variety of games.2 It also contributes to a small
but growing literature on how salience shapes behaviour and how this can be
incorporated into game-theoretic models.3 Crawford and Iriberri (2007) do a re-
markable job in joining these two branches of the literature. What the present
paper shows is that salience influences on behaviour remain a phenomenon that
is not as straightforward as it may seem. It is not obvious a priori what is salient
in the eyes of experimental participants, and it remains to be understood how
exactly salience shapes participant behaviour.

The remainder of this paper is organised as follows: in Section 2, I present
the four salience-elicitation experiments. Section 3.1 presents the results of these
experiments. On the basis of these results, I modify the equilibrium model with
salience-based payoff-perturbations CI use as a benchmark in Section 3.3. In Sec-
tion 3.4, I present the predictions of Crawford and Iriberri’s model and report on
the resulting model fits for all models presented in their paper when the respec-
tive models are based on an experimentally-elicited salience-pattern. Section 3.5
presents two variants of a potential modification of Crawford and Iriberri’s level-
k model and evaluates them in terms of their fit to the data. In Sections 3.6 and
3.7, I analyse the predictive power of the different variants in out-of-sample and
out-of-game predictions. Section 3.8 incorporates a heterogeneous level-0 and
evaluates the resulting models’ data fit. Section 4 summarises the data and dis-
cusses the findings. An explanation of the model denotations used throughout
the paper can be found in Section 3.2.

2 Design of the salience-elicitation experiments

The purpose of the salience-elicitation exercise is to provide a clearer under-
standing of what may constitute an adequate level-0 specification for the model.
I argue that there are multiple ways of how salience could determine level-0 that
are associated with distinct empirical measures. On the level of beliefs involved,
I follow three approaches: a first approach is to define level-0 directly in terms of
the available actions’ salience (primary salience in Bardsley et al., 2010, referring
to Lewis, 1969). This corresponds most closely to CI’s proposedmodel. A second

2E.g., Burchardi and Penczynski (2014) or the many papers cited in Crawford, Costa-Gomes
and Iriberri (2013).

3E.g, Mehta, Starmer and Sugden (1994) or Bardsley et al. (2010).
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2 DESIGN OF THE SALIENCE-ELICITATION EXPERIMENTS

approach is to ask what people think will be salient for other people (secondary
salience in Bardsley et al., 2010, also referring to Lewis, 1969). This corresponds
more closely to CI’s general reasoning about level-0, given level-0 is meant to ex-
ist only in the players’ minds. Finally, we may be tempted to argue that the truly
relevant aspect would be to ask what people think others will think everybody
will hold to be salient, and so on, ad infinitum.4,5

Having looked at the above ‘levels of salience’, I also want to test whether the
game description will shape the salience of the available actions. More precisely,
players may assess an action’s salience differently, depending on whether they
look at the actions per se, or whether they look at the actions taking into account
the game they will be playing.6 In the latter case, it would be plausible also to
assume that players’ roles may affect their salience assessment.7

In this study, I examine four experimental measures of a salience-based level-
0. The first threemeasures are a full variation along the belief dimension, keeping
the game description out. The fourth measure uses the secondary-salience mea-
sure to explore the effect of introducing the game story (and whether an asym-
metry follows from that). To be precise, I look at the following experiments:

Picking Task. Elicitation of the different boxes’ salience by asking people to choose one
of four boxes labelled “A”, “B”, “A”, and “A”, and click on the chosen box,
on a separate page of a post-experimental questionnaire after an unrelated
experiment.8 This is the “picking task” Bardsley et al. (2010) use to elicit
primary salience. As a crucial complementary measure to assess salience,
I record response times for this task.

4Bardsley et al. (2010) point out there may be higher ‘levels of salience’ but argue that they
are likely to coincide with secondary salience. My results would support this conjecture.

5It could be argued that only primary salience should be a candidate for level-0, given sec-
ondary and higher-order salience involve strategic thinking in the sense of guessing about others’
perceptions or even about others’ reasoning about these perceptions. Because strategic thinking
is what the model should explain, so the argument, we should not include strategic thinking as
an input into the theory via level-0. I agree that a model based on an empirical measure of what
players think others will regard as salient is incomplete. At the same time, I disagree that we
should be able to discard level-k theory already by showing that primary and secondary salience
are different. Rather, I would see a model able to explain choices based on empirically-measured
secondary salience as a fruitful first step to a more complete model that gets rid of the problem.
Because of this, I include also secondary and ‘infinite-level’ salience as candidates for level-0. I
thank Shaun Hargreaves Heap, David Rojo Arjona and Robert Sugden for raising this point.

6In fact, the study by Hargreaves Heap, Rojo Arjona and Sugden (2014) suggests this may be
the case.

7CI partially incorporate this latter aspect by presenting different model specifications, e.g.,
including a salience-seeking level-0 seeker and a salience-avoiding level-0 hider.

8The post-experimental questionnaire mainly contains questions from the 16PF personality
inventory. Participants have not participated in any hide-and-seek experiment before.
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Guessing Task. Elicitation of what people think will be salient for other people. For this
purpose, we ask participants to estimate the relative click frequencies from
the answers elicited by the Picking Task.9 This is the “guessing task” Bard-
sley et al. (2010) use to elicit secondary salience.

Beauty Contest. A beauty contest on the consensus onwhat is salient. The contest anchored
in the question “which is the most salient box, which are the second, third,
and fourth most salient boxes?” and was conducted as a classroom exper-
iment in the Experimental Methods course.10

Post-Game Guessing. Elicitation of what people who know the game think will be salient for
others. For this purpose, we asked participants to estimate the relative
click frequencies of the Picking Task responses. This was done after they
had played the hide-and-seek game but before they got any feedback. This
measure serves as a benchmark for how the game—and possibly, the role—
changes salience-perceptions.11

None of the participants participated in more than one of the four experiments.
All experiments were run at the University of Konstanz, the Picking Task, the
Guessing Task, and the Post-Game Guessing at its Lakelab.

As an additional measure of primary salience, I include the predictions of
a salience-based model of visual attention (Algorithm). This model has been
extended from Itti, Koch and Niebur (1998) by EyeQuant Attention Analytics
(www.eyequant.com) based on eye-tracking studies and psychophysics experi-
ments (for another successful application, cf. Towal, Mormann and Koch, 2013).

3 Results

This section is organised as follows: first, I report on the outcomes of the salience-
elicitation exercises. In Section 3.2, I introduce the denominations of all mod-
els that appear in the paper. Then, I briefly present what the elicited salience-
measures mean for Crawford and Iriberri’s (2007) benchmark model of an equi-
librium with payoff perturbations, in Section 3.3. Following that, I look at what
the salience-elicitation exercises would mean for the model variant proposed by

9The task was incentivised in the following way: if no frequency differed from the true value
bymore than 5% (10%/20%), participants could earn an additional 50 (25/10) Euro cents, otherwise,
they did not earn anything. The task was the first task participants faced in the experiment, they
knew there would be further tasks, but they did not know what those tasks would be.

10Amongst those stating the modal ordering, a prize of 12 Euros (about USD 15.60 at the time)
was raffled off.

11Incentives as in the Guessing Task.
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Crawford and Iriberri (2007) in Section 3.4, by replicating their model-fitting ex-
ercise using the elicited salience patterns as level-0. In Section 3.5, I propose a
modification of the model and redo the fitting exercise for this modified version.
In Sections 3.6 and 3.7, I evaluate the best-fitting models by their ability to pre-
dict out-of-sample and out-of-game. Finally, in Section 3.8 I analyse whether a
level-k model based on a heterogeneous level-0 can account for coordination-
game and discoordination-game data from Section 3.7. For ease of notation, in
the remainder of this article I will describe the locations “A”, “B”, “A”, and “A” by
A(1), B(2), A(3), and A(4), respectively.

3.1 Salience in the ABAA hide-and-seek game

The results of the four salience-elicitation experiments and the additional Algo-
rithm prediction are reported in Table 1, together with the respective numbers
of independent observations (where applicable).12

Observation 1. B(2) is the most salient alternative.

This can be easily seen by looking at the second data column in Table 1. B(2)

is the alternative chosen most often in the Picking Task, where it also is the
fastest choice (The p-values ofWilcoxon-Mann-Whitney-tests for response times
are 0.085, 0.061, and 0.001, for the comparisons with A(1), A(3), and A(4));

13 it is
predicted to obtain the most attention by the Algorithm; in the Guessing Task

and the Post-Game Guessing, it on average is estimated to be clicked on the
most by a margin of 19% and 15%, respectively; and it ranks first in the Beauty
Contest, no matter whether one looks at the winning ordering or at average
ranks.14

Observation 2. A(4) rather than A(3) is the least salient alternative, possibly in
conjunction with A(1).

12www.eyequant.com offers two versions of the model, one for the first impression of new
visitors, and one for “engaged visitors”. Here, we report the figures for new visitors. The nor-
malised predicted relative attention for B(2) (38%) and A(3) (25%) under the “engaged-visitors”
model differs only marginally, whileA(1) (16%) andA(4) (21%) shift positions. This fluctuation in
the bordering As could be read as indicating that they are similarly salient after all. The analysis
can be found on http://www.wiwi.uni-konstanz.de/fischbacher/home/staff/dr-irenaeus-wolff/.

13In order not to favour the options I expected to be seen as most salient, the cursor was placed
at the bottom right of the screen before the Picking Task, and therefore, closest to “final A”.

14As the crudest-possible statistical measure, assume that the next-salient candidate has an
equal chance of coming out as the most salient alternative on each of the six measures (frequency
and response time in the Picking Task, Algorithm prediction, estimate by Guessing-Task par-
ticipants and by hiders and by seekers in Post-Game Guessing, and any ranking measure in the
Beauty Contest), and then compute the p-value of the according binomial test to be p = 1/64.
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A(1) B(2) A(3) A(4)

Picking Task (405 participants)
relative click frequencies (in %) 21 38 35 6
response times (in sec)
mean 8.8 7.7 8.5 11.9
median 8.0 7.1 7.5 9.4

Algorithm

predicted relative attention (in %) 20 37 24 18

Guessing Task (72 participants)
average estimated relative click frequency 21 41 22 15

Beauty Contest (30 participants)
rank in beauty contest

winning order (chosen by 14 participants) 2 1 3 4
mean ranks 2.3 1.5 2.5 3.6

Post-Game Guessing (156 participants)
average estimated relative click frequency 19 39 24 18
...by hiders (78 obs.) 19 38 24 19
...by seekers (78 obs.) 19 40 25 17

Table 1: Salience assessments of the four boxes denoted by “A”, “B”, “A”, and “A”.

Looking at the final column of Table 1, we see that all measures indicate
A(4) is the least salient option.

15 In Post-Game Guessing, A(1) and A(4) may be
considered to be jointly the least salient locations. A(3) in all measures is elicited
to be the second-most (Picking Task, Algorithm, Guessing Task, and Post-

Game Guessing) or third-most (Beauty Contest) salient location.

Observation 3. The description of the game alters the qualitative pattern of par-
ticipants’ assessment of others’ salience perceptions. At the same time, partici-
pants’ roles in the hide-and-seek game do not seem to influence their estimates
of other people’s salience perceptions.

For the first part of Observation 3, compare the average estimated relative
click frequencies of the Guessing Task and the Post-Game Guessing. While
the largest quantitative difference between the corresponding average estimates
in the Guessing Task and the Post-Game Guessing is a mere 3%, there seems to
be a clear difference in the qualitative pattern. In the Guessing Task, there is a
substantial difference between the average estimated relative click frequency of
A(1) and A(4) (and none between A(1) and A(3)), while in the Post-Game Guess-
ing, the average estimates for A(1) and A(4) are virtually identical (and there is

15In this case, all response time comparisons are associated with p-values below 0.02.
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a clear difference with respect to A(3)).
16 For the second part of Observation 3,

note that within the Post-Game Guessing the qualitative pattern clearly is the
same for hiders and seekers, and the quantitative difference between the average
estimates is 2% at most.

3.2 Preliminaries: model denominations

Throughout this paper, I will work with a variety of models to account for be-
haviour. Table 2 is meant to systemize them sufficiently so that it is easier to
refer to the different models in the text. There are two main aspects on which
the models differ: the salience-pattern on which the model is based, and on the
hypothesized strategic thinking given this salience-pattern. In terms of the latter,
I will refer to three kinds of models: naïve responses driven by salience that do
not require any strategic thinking at all; equilibrium (eqm) models, potentially
including salience-based payoff perturbations; and level-k (Lk)-models. In terms
of the salience-pattern used, I will refer to the hypothesised pattern in Craw-
ford and Iriberri (2007; hyp-

[

A(1)A(4)

]

B(2)A(3)), the Picking-Task data (pick-
B(2)

[

A(3)A(1)

]

A(4); representing also the measures from the Guessing Task and
the Beauty Contest), and different Post-Game Guessing experiments (postX,
where X is a wildcard referring to the respective game). In Section 3.8, I will re-
lax the assumption that all players have the same salience perception and allow
for a heterogeneous level-0 (indL0). To give an example, Lksoph-postDiscoord-
indL0 denotes a level-k model that is based on individuals’ salience perceptions
as elicited in a guessing task played after a discoordination game, where play-
ers follow salience when indifferent for payoff reasons and where higher-level
players are aware of lower-level players’ randomisation ‘technique’.

3.3 Crawford and Iriberri’s (benchmark) equilibriummodel

with payoff perturbations

In the following section, I briefly present the model of an equilibrium with hard-
wired payoff perturbations CI use as a benchmark. CI start with the normal form
game and posit that players will have a preference for some locations which de-
pends on those locations’ salience. Hiders are assumed to dislike choosing salient
locations, while seekers are assumed to favour them. Here, I use the salience

16Wilcoxon matched-pairs signed-ranks tests support these observations: in the Guessing

Task, they yield p ≤ 0.001 for the comparisons of a participant’s A(4)-estimate with both her
A(1)-estimate and her A(3)-estimate, while for the comparison of her A(1)-estimate with her
A(3)-estimate, the test yields p = 0.883. In Post-Game Guessing, the same test yields p = 0.133
for the comparison betweenA(1) andA(4), and p < 0.001 for the comparisons betweenA(3) and
both A(1) and A(4).
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Model of strategic thinking

naïve Players choose according to salience, no strategic thinking involved.
eqm0 Assumes rationality and common knowledge thereof; no payoff perturbations.
eqm+ Assumes rationality and common knowledge thereof; there are payoff pertur-

bations that follow salience.
Lk Each level-k player best-responds to a level-(k−1) player; when best-response

is not unique, players randomise uniformly over all best-responses.
Lkunsoph Each level-k player best-responds to a level-(k−1) player; when best-response

is not unique, players randomise according to the best-responses’ salience;
when a level-k′ player randomises, a level-k′ + 1 player best-responds to a
uniformly-randomising level-k′ player.

Lksoph Each level-k player best-responds to a level-(k−1) player; when best-response
is not unique, players randomise according to the best-responses’ salience;
when a level-k′ player randomises, a level-k′ + 1 player best-responds to a
level-k′ player’s true mix.

Salience-pattern origin

hyp The salience-pattern is inferred by model-fitting.
pick The salience pattern used stems from the Picking-Task data. Participants do

not know anything about any of the games.
postX The salience pattern used stems from Post-Game Guessing after participants

have played game X. X can be H&S for the hide-and-seek, coord for the co-
ordination, and discoord for the discoordination game.

Salience-pattern used

w[xy]z This postfix repeats the salience ranking used in the model. Locations w to
z are ordered by decreasing salience, square brackets indicate indifference. In
the example, location w is the most, and z the least salient location, while x
and y are equally salient locations.

indL0 This postfix means the model predictions use participants’ individual salience
measurements as their respective level-0.

avoid This additional postfix indicates that players are assumed to use a salience-
avoiding level-0. It is used only in two specifications provided in the appendix
for completeness (see ftn. 19).

asym This additional postfix indicates that hiders (seekers) are assumed to use a
salience-avoiding(-loving) level-0. It is used only in two specifications pro-
vided in the appendix for completeness (see ftn. 19).

Table 2: Systemization of the models used in this paper.

measure postH&S-B(2)A(3)

[

A(1)A(4)

]

: assume hiders will obtain an extra ben-
efit (seekers incur a cost) of e when they choose one of the end locations and
a cost (a benefit) of f when they choose B(2). If A(1) and A(4) are jointly least
salient (as in postH&S-B(2)A(3)

[

A(1)A(4)

]

), we should expect e > 0 and f > 0.17

17Given CI posit that A(1) and A(4) are jointly most salient, they write down the model using
e′ ≡ −e and expect the maximum-likelihood estimation to yield e′ > 0. However, given CI do
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Table 3 shows the resulting normal form.

Seeker

A(1) B(2) A(3) A(4)

Hider

A(1)
1− e 0 + f 0 0− e

0 + e 1 + e 1 + e 1 + e

B(2)
0− e 1 + f 0 0− e

1− f 0− f 1− f 1− f

A(3)
0− e 0 + f 1 0− e

1 1 0 1

A(4)
0− e 0 + f 0 1− e

1 + e 1 + e 1 + e 0 + e

Table 3: The hide-and-seek game with payoff perturbations when A(1) and A(4)

are equally salient (adapted from Crawford and Iriberri, 2007, Figure 2).

Alternatively, we can base the game with payoff perturbations also on pick-
B(2)

[

A(3)A(1)

]

A(4). This specification fits the data worse and is therefore rele-
gated to Table A.1 in the Appendix.

3.4 Level-k model fit under the elicited salience patterns

BasingCI’s level-kmodel on the elicited saliencemeasures pick-B(2)

[

A(3)A(1)

]

A(4)

and postH&S-B(2)A(3)

[

A(1)A(4)

]

, Table 4 presents players’ predicted choices de-
pending on their k-level.

Using the same data as CI, I perform a complete grid search over all possi-
ble type-distributions (at the percent level), to find the level-k distribution un-
der which the data has the highest log-likelihood, using equation (2) in CI.18

Table 5 presents the results. The focal models in Table 5 are CI’s preferred
level-kmodel using the empirically-elicited salience patterns as level-0, Lk-pick-
B(2)

[

A(3)A(1)

]

A(4) and Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

.19 For comparison, I in-
clude also estimates of the following six benchmark models: choice according to

not put restrictions on the signs of e and f (Eqm+-hyp-
[

A(1)A(4)

]

), both games are equivalent.
18Note that I present this analysis primarily for comparability. By the logic of this paper,

I should restrict myself to a small subset of the data: CI use data from 6 different treatments
conducted by Rubinstein and co-authors; to use all 6, CI have to make assumptions of how to
convert the data from some treatments to make them comparable to the data from others. E.g.,
data from a treatment using “A”, “A”, “B”, and “A” is adapted by simply switching the two locations
in the middle. Whether this is appropriate based on the underlying salience structure is, again,
an empirical question. I refer to the analysis of Heinrich andWolff’s (2012) data in the right-hand
part of Table 5 for an analysis that does not rely on comparable assumptions.

19 CI’s alternative level-k specifications with an asymmetric level-0 (favouring salience for
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3 RESULTS

k-level pick-B(2)

[

A(3)A(1)

]

A(4) postH&S-B(2)A(3)

[

A(1)A(4)

]

(frequency) box Hider Seeker Hider Seeker

L0 (π0 ≡ 0) A(1) 0.21 0.21 0.19 0.19

B(2) 0.38 0.38 0.39 0.39

A(3) 0.35 0.35 0.24 0.24

A(4) 0.06 0.06 0.18 0.18

L1 (π1) A(1) 0 0 1/2 0

B(2) 0 1 0 1

A(3) 0 0 0 0

A(4) 1 0 1/2 0

L2 (π2) A(1) 1/3 0 1/3 1/2

B(2) 0 0 0 0

A(3) 1/3 0 1/3 0

A(4) 1/3 1 1/3 1/2

L3 (π3) A(1) 1/3 1/3 0 1/3

B(2) 1/3 0 1/2 0

A(3) 1/3 1/3 1/2 1/3

A(4) 0 1/3 0 1/3

L4 (π4) A(1) 0 1/3 0 0

B(2) 1 1/3 1 1/2

A(3) 0 1/3 0 1/2

A(4) 0 0 0 0

Total A(1)
π2+π3

3
π3+π4

3
π1

2
+ π2

3
π2

2
+ π3

3

B(2)
π3

3
+ π4 π1 + π4

3
π3

2
+ π4 π1 + π4

2

A(3)
π2+π3

3
π3+π4

3
π2

3
+ π3

2
π3

3
+ π4

2

A(4) π1 + π2

3
π2 + π3

3
π1

2
+ π2

3
π2

2
+ π3

3

Table 4: Level-k players’ hide-and-seek choice probabilities under pick-
B(2)

[

A(3)A(1)

]

A(4) and postH&S-B(2)A(3)

[

A(1)A(4)

]

. The fraction of players of
level i is denoted by πi.

the empirically-elicited salience patterns (naïve-pick-B(2)

[

A(3)A(1)

]

A(4), naïve-

postH&S-B(2)A(3)

[

A(1)A(4)

]

); the standardmixed-strategyNash-equilibrium (eqm0);
CI’s equilibrium with “unrestricted” payoff perturbations based on A(1) and A(4)

being equally salient (eqm+-hyp-
[

A(1)A(4)

]

), as well as with ‘partially restricted’
perturbations (so as to match the elicited salience pattern; eqm+-postH&S-
B(2)A(3)

[

A(1)A(4)

]

);20 CI’s preferred level-k model under their salience assump-

seekers and avoiding it for hiders, Lk-X-asym) and with a salience-avoiding level-0 (Lk-X-avoid)
are included in Table A.2 in the Appendix.

20The estimates of eqm+-hyp-
[

A(4)

]

(no restriction on the sign of e) and eqm+-pick-

B(2)

[

A(3)A(1)

]

A(4)) are also included in Table A.2 in the Appendix. For all eqm+-estimations,
I use a two-step procedure: I first do a complete grid search over all four parameters for −1 ≤

eH , fH , eS , fS ≤ 1 at the five-percent level, and then another one at the percent level for the pa-
rameter space [eH−0.1, eH+0.1]×[fH−0.1, fH+0.1]×[eS−0.1, eS+0.1]×[fS−0.1, fS+0.1].

12



3 RESULTS

RTH’s data HW’s data
Specification logL MSE logL MSE

Choices follow salience

naïve-pick-B(2)

[

A(3)A(1)

]

A(4) -1724 0.01271 -521 0.01654

naïve-postH&S-B(2)A(3)

[

A(1)A(4)

]

-1687 0.01647 -487 0.01662

Equilibrium models

eqm0 -1641† 0.00967† -484 0.01436

eqm+-hyp-
[

A(1)A(4)

]

-1562† 0.00006† -456 0.00109

(eH = −0.29, fH = 0.25, eS = −0.15, fS = 0.15)†

eqm+-postH&S-B(2)A(3)

[

A(1)A(4)

]

-1636 0.00909 -483 0.01467

(eH = 0.00, fH = 0.06, eS = 0.00, fS = 0.05)

CI’s preferred model

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) -1564† 0.00027† -456 0.00110

Lk-pick-B(2)

[

A(3)A(1)

]

A(4) -1635 0.00903 -482 0.01358

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-1664 0.01202 -485 0.01538

Table 5: Log-likelihoods and mean squared errors of the maximum-likelihood
estimates of the indicated models. The first two data columns use the data from
Rubinstein, Tversky, and Heller’s collected studies (“RTH”), reproduced in Table
3 of Crawford and Iriberri (2007; “CI”). Columns three and four replicate the
findings using Heinrich and Wolff’s (2012; “HW”) data. † indicates the estimate
is taken from CI’s paper.

tion (Lk-hyp-
[

A(1)A(4)

]

B(2)A(3)).
Readers may object that the salience-elicitation experiments where all con-

ducted in Germany, and therefore, in a different cultural environment than the
actual games. Furthermore, if people from different cultures have different per-
ceptions in terms of salience or if their salience-based strategic reasoning is
shaped culturally, we cannot conclude much from elicitating salience in one part
of the world to explain behaviour in another. To respond to this valid objection,
I also include the model estimates for German hide-and-seek data, taken from a
study by Heinrich and Wolff (2012).21

Observation 4. ‘Random clicking’ as shaped by salience patterns does not ex-
plain the data well.

Observation 4 rests on the fact that both the log-likelihoods and the mean
squared errors of specificationsnaïve-pick-B(2)

[

A(3)A(1)

]

A(4) andnaïve-postH&S-
B(2)A(3)

[

A(1)A(4)

]

indicate a fit that is even worse than the equilibrium predic-
tion without payoff perturbations. This is important because naïve, unstrategic
responses are one of two explanations for hide-and-seek data in the literature.

21For comparability, I include only the data obtained under the original instructions. As
pointed out in footnote 18, this data has the additional advantage that it was obtained exclu-
sively under the ABAA-protocol, so that no further assumptions are needed of how to translate
salience patterns from other setups, such as the AABA-protocol.
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RTH’s data HW’s data
Specification L1 L2 L3 L4 L1 L2 L3 L4

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) 0.19† 0.32† 0.24† 0.25† 0.12 0.37 0.29 0.22

Lk-pick-B(2)

[

A(3)A(1)

]

A(4) 0.21 0.00 0.79 0.00 0.23 0.00 0.70 0.07

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

0.31 0.00 0.69 0.00 0.32 0.00 0.59 0.09

Table 6: Level-k distributions of the maximum-likelihood estimates in Table 5.
The first four data columns use the data from Rubinstein, Tversky, and Heller’s
collected studies (“RTH”), reproduced in Table 3 of Crawford and Iriberri (2007;
“CI”). Columns five to eight replicate the findings using Heinrich and Wolff’s
(2012; “HW”) data. † indicates the estimate is taken from CI’s paper.

Main Result 1. Using the same data as Crawford and Iriberri (2007), measured-
salience-based estimates for their preferred level-k model fit the data clearly
worse than the estimates they derive for an equilibriummodel with ‘unrestricted’
payoff perturbations. The better-fitting Specification Lk-pick-B(2)

[

A(3)A(1)

]

A(4)

hardly outperforms even the mixed-strategy Nash-equilibrium prediction, de-
spite its higher number of free parameters.

Main Result 1 can be verified by a look at the Table-5 columns reporting
the log-likelihoods, comparing specification Lk-pick-B(2)

[

A(3)A(1)

]

A(4) to spec-
ifications eqm+-hyp-

[

A(1)A(4)

]

and eqm0, respectively.
22 Note that it does not

depend on the level-k distribution we use—that is, it holds even for the estimates
yielding the highest likelihoods. These distributions are depicted in Table 6.

Observation 5. Maximum-likelihood estimates of both elicited-salience-based
variants of Crawford and Iriberri’s (2007) preferred model are implausible, ex-
hibiting a zero fraction of Level-2 players in conjunction with fractions of Level-1
and Level-3 players that (virtually) sum up to 1.

Observation 5 follows from the rows corresponding to specifications Lk-
pick-B(2)

[

A(3)A(1)

]

A(4) and Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

in Table 6. As was
already stated, “[t]he estimated distribution tends to be stable across games and
hump-shaped,” (CI, p. 1734, emphasis added) which renders the estimates im-
plausible.

22The first part holds also for all other level-k variants presented in CI: both Lk-postH&S-
B(2)A(3)

[

A(1)A(4)

]

-asym and -avoid exhibit log-likelihoods of -1603 (RTH’s data) and -465
(HW’s data), cf. Table A.2 in the Appendix. Further, it holds for an alternative Lk-pick-
[

B(2)A(3)

]

A(1)A(4) specification that Shaun Hargreaves Heap, David Rojo Arjona and Robert
Sugden have suggested would fit the picking-task data better (logL of −1643, RTH’s data, and
of -471, HW’s data). I am not presenting this alternative in the main text because the measured
reaction times in my view suggest B(2) and A(3) are salient to different degrees, as does the
Algorithm data.
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Finally, note that CI’s estimation also of the equilibrium with perturbations
(eqm+-hyp-

[

A(1)A(4)

]

) suggests a salience pattern that exhibits A(3) as the least
salient alternative (eH , eS < 0, fH , fE > 0). This would imply that either all
of our empirical estimates of salience are wrong or the benchmark equilibrium
model rests on implausible mechanics, too.

Observation 6. Estimates for the equilibrium models with payoff perturbations
under the constraint that the payoff perturbations follow one of the elicited
salience-pattern candidates have a similarly bad model fit as the re-estimated
CI models.

This observation follows from looking at the row in Table 5 pertaining to
specification eqm+-postH&S-B(2)A(3)

[

A(1)A(4)

]

, and comparing the log-likelihood
to those of the specifications Lk-pick-B(2)

[

A(3)A(1)

]

A(4) and Lk-postH&S-
B(2)A(3)

[

A(1)A(4)

]

.23 Note that Observations 4-6 also hold for the data from
Heinrich andWolff (2012), as can be verified by looking at the respective columns
in the right-hand part of Tables 5 and 6. The similarity of the estimated parame-
ters and of the models’ relative likelihoods suggest that the hide-and-seek game
is played in a similar fashion in Stanford, Tel Aviv, and Konstanz.

3.5 Amodified level-kmodel based on elicited salience pat-

terns

In section 3.1, I reported empirical measures of a salience-based level-0; in sec-
tion 3.4, I established that basing the model proposed by CI on these empirically-
elicited salience patterns leads to implausible model estimates with a poor data
fit—an assertion that holds true also for their benchmark equilibriummodel with
payoff perturbations. In this section, I will argue that a simple modification of
CI’s model restitutes the notably good fit to the data reported in their paper. This
modification assumes that a player who should be indifferent between multiple
actions randomises over these actions according to their relative salience rather
than randomising uniformly. This may happen for a variety of different rea-
sons: different people might be inherently attracted to different locations when
no compelling economic force acts on them; they might decide to choose ‘just
anything’ from among the options they are indifferent about, in a similar fashion
as participants in our Picking Taskwill have chosen one of the boxes when there
was no reason to favour any box over the other; or they might try to randomise
uniformly, but the attraction exerted by salience might unconsciously interfere
with their randomisation attempts.

23The same holds true for eqm+-pick-B(2)

[

A(3)A(1)

]

A(4), cf. Table A.2 in the Appendix.
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Given the above argument, there are two different ways to implement the
idea. The simpler variant (Lkunsoph) corresponds to the idea that higher-level
players are unaware of salience-influences on randomisation by lower-level play-
ers. Hence, if a level-i player randomises, a level-(i+1) player (wrongly) assumes
the level-i player is randomising uniformly. The obvious alternative is that the
level-(i+1) player is aware of the randomising level-i player’s inability not to be
attracted by salience, and best-responds to the resulting probability distribution
(Lksoph). Table 7 presents the resulting predictions.

On the basis of the predictions from Table 7, I estimate the modified level-k
model using level-0 specifications pick-B(2)

[

A(3)A(1)

]

A(4) and postH&S-B(2)A(3)

[

A(1)A(4)

]

.
This time, I do not restrict the fraction of level-0 players to be 0, for two reasons.
First, I want to show for which model variants the assumption is binding. And
second, to be able to estimate specification Lksoph-pick-B(2)

[

A(3)A(1)

]

A(4), we
need to include errors of some form.24 Arguably, if errors correspond to ran-
domly picking an action, the salience pattern—which corresponds to level-0 in
the model—constitutes a plausible error specification. In this view, the estimated
fraction of level-0 players is a measure for the frequency of errors.25 Table 8
reports the resulting model fits to the data.

Main Result 2. The modified level-k model is able to fit the data substantially
better compared to Crawford and Iriberri’s (2007) level-k variant when the latter
also is based on empirically-elicited salience patterns. The best fit to the data—
being almost as good as the fit of the equilibriumwith unrestricted perturbations—
is achieved by the model in which higher levels are aware of the influence of
salience on randomising players and level-0 is given by the data from the Post-
Game Guessing task.

The first claim rests on a comparison of the log-likelihoods of Lksoph-postH&S-
B(2)A(3)

[

A(1)A(4)

]

in Table 8 to those of Lk-pick-B(2)

[

A(3)A(1)

]

A(4) and Lk-
postH&S-B(2)A(3)

[

A(1)A(4)

]

in Table 5.26 For the second, note that the log-
likelihood of Lksoph-postH&S-B(2)A(3)

[

A(1)A(4)

]

in Table 8 is very close to that
of eqm+-hyp-

[

A(1)A(4)

]

in the same table and thatwhile Lksoph-pick-B(2)

[

A(3)A(1)

]

A(4)

(with one additional parameter) has a slightly better fit to Heinrich and Wolff’s

24Otherwise, the log-likelihood function would always yield −∞, making it impossible to
detect the best-fitting level-k distributions.

25One obvious alternative error specification would be to assume players choose any location
with equal probabilities whenever they make an error. However, it is completely unclear to me
what kind of errors would lead to a uniform error structure: e.g., mis-clicks should be more
likely to end up at the immediately adjacent locations, in which case the error structure should
be hump-shaped.

26The claim also holds true with respect to CI’s other level-k variants, cf. Table A.2 in the
Appendix.
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k-level Lkunsoph-pick-B(2)

[

A(3)A(1)

]

A(4) Lkunsoph-postH&S-B(2)A(3)

[

A(1)A(4)

]

(frequency) box Hider Seeker Hider Seeker

L0 (π0) A 0.21 0.21 0.19 0.19
B 0.38 0.38 0.39 0.39
A 0.35 0.35 0.24 0.24
A 0.06 0.06 0.18 0.18

L1 (π1) A 0.00 0.00 0.51 0.00
B 0.00 1.00 0.00 1.00
A 0.00 0.00 0.00 0.00
A 1.00 0.00 0.49 0.00

L2 (π2) A 0.35 0.00 0.31 0.51
B 0.00 0.00 0.00 0.00
A 0.56 0.00 0.39 0.00
A 0.10 1.00 0.30 0.49

L3 (π3) A 0.23 0.35 0.00 0.31
B 0.40 0.00 0.62 0.00
A 0.37 0.56 0.38 0.39
A 0.00 0.10 0.00 0.30

L4 (π4) A 0.00 0.23 0.00 0.00
B 1.00 0.40 1.00 0.62
A 0.00 0.37 0.00 0.38
A 0.00 0.00 0.00 0.00

Total A 0.21π0 + 0.35π2 + 0.23π3 0.21r + 0.35π3 + 0.23π4 0.19π0 + 0.51π1 + 0.31π2 0.19π0 + 0.51π2 + 0.31π3

B 0.38π0 + 0.4π3 + π4 0.38π0 + 0.4v + π1 0.39π0 + 0.62π3 + π4 0.39π0 + 0.62v + π1

A 0.35π0 + 0.56π2 + 0.37π3 0.35π0 + 0.56π3 + 0.37π4 0.24π0 + 0.39π2 + 0.38π3 0.24π0 + 0.39π3 + 0.38π4

A 0.06π0 + π1 + 0.1π2 0.06π0 + π2 + 0.1π3 0.18π0 + 0.49π1 + 0.3π2 0.18π0 + 0.49π2 + 0.3π3

k-level Lksoph-pick-B(2)

[

A(3)A(1)

]

A(4) Lksoph-postH&S-B(2)A(3)

[

A(1)A(4)

]

(frequency) box Hider Seeker Hider Seeker

L0 (π0) A 0.21 0.21 0.19 0.19
B 0.38 0.38 0.39 0.39
A 0.35 0.35 0.24 0.24
A 0.06 0.06 0.18 0.18

L1 (π1) A 0.00 0.00 0.51 0.00
B 0.00 1.00 0.00 1.00
A 0.00 0.00 0.00 0.00
A 1.00 0.00 0.49 0.00

L2 (π2) A 0.35 0.00 0.31 0.51
B 0.00 0.00 0.00 0.00
A 0.56 0.00 0.39 0.00
A 0.10 1.00 0.30 0.49

L3 (π3) A 0.23 0.00 0.00 0.00
B 0.40 0.00 0.62 0.00
A 0.37 1.00 0.38 1.00
A 0.00 0.00 0.00 0.00

L4 (π4) A 0.33 0.00 0.25 0.00
B 0.58 1.00 0.51 1.00
A 0.00 0.00 0.00 0.00
A 0.09 0.00 0.24 0.00

Total A 0.21π0 + 0.35π2 + 0.23π3 + 0.33π4 0.21π0 0.19π0 + 0.51π1 + 0.31π2 + 0.25π4 0.19π0 + 0.51π2

B 0.38π0 + 0.4π3 + 0.58π4 0.38π0 + π1 + π4 0.39π0 + 0.62π3 + 0.51π4 0.39π0 + π1 + π4

A 0.35π0 + 0.56π2 + 0.37π3 0.35π0 + π3 0.24π0 + 0.39π2 + 0.38π3 0.24π0 + π3

A 0.06π0 + π1 + 0.1π2 + 0.09π4 0.06π0 + π2 0.18π0 + 0.49π1 + 0.3π2 + 0.24π4 0.18π0 + 0.49π2

Table 7: Types’ hide-and-seek choice probabilities when salience follows pick-
B(2)

[

A(3)A(1)

]

A(4) and postH&S-B(2)A(3)

[

A(1)A(4)

]

(left- and right-hand halves of the Ta-
ble, respectively), and when higher-level players are unsophisticated and sophisticated (up-
per and lower half of the Table, respectively).
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rth’s data hw’s data
Specification logL MSE logL MSE

Equilibrium models

eqm0 -1641∗ 0.00967∗ -484 0.01436
eqm+-hyp-

[

A(1)A(4)

]

-1562∗ 0.00006∗ -456 0.00109

(eH = 0.29, fH = 0.25, eS = 0.15, fS = 0.15)

CI’s preferred model

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) -1564∗ 0.00027∗ -456 0.00110

Modified level-k models

Lkunsoph-pick-B(2)

[

A(3)A(1)

]

A(4) -1578 0.00201 -463 0.00509

best ‘hump-shaped’ type distribution -1584 0.00263 -466 0.00642

Lkunsoph-postH&S-B(2)A(3)

[

A(1)A(4)

]

-1666 0.01286 -484 0.01437

best ‘hump-shaped’ type distribution‡ -1668 0.01616 -485 0.01735

Lksoph-pick-B(2)

[

A(3)A(1)

]

A(4) -1597 0.00310 -457 0.00152

best ‘hump-shaped’ type distribution -458 0.00166

Lksoph-postH&S-B(2)A(3)

[

A(1)A(4)

]

-1570 0.00097 -458 0.00143

†As CI do not rely on any specific L0-pattern, it is not clear to me how to endogenise π0 without including yet another
two parameters (p and q in their paper). As I am reluctant to do so, I maintain π0 ≡ 0 for their preferred model. ‡I
do not require π0 < π1 for a ‘hump-shaped’ pattern, given ‘random-clicking’ without further strategic deliberation is
one of the two explanations for hide-and-seek behaviour in the literature, and thus may co-exist with level-k behaviour.
∗indicates figures taken from CI’s paper.

Table 8: Log-likelihoods for the leading models in CI (first three specifications)
and the modified level-k models assuming that players follow salience when in-
different. Variants indicated by “best hump-shaped distribution” are estimated
under the constraint that theremay not be fewer level-2 players than level-1 play-
ers. Columns three and four replicate the findings using Heinrich and Wolff’s
(2012; “hw”) data.

data, it has a substantially worse fit to Rubinstein, Tversky and Heller’s original
data. Furthermore, the estimated level-distributions in Table 9 indicates that the
best-fittingmodel does not exhibit the U-shaped levels distribution of the original
level-k variants based on pick-B(2)

[

A(3)A(1)

]

A(4) or postH&S-B(2)A(3)

[

A(1)A(4)

]

,
nor Crawford and Iriberri’s uncommonly high estimates of level-4 prevalence.

Observation 7. The model estimations do not indicate a large fraction of non-
strategic behaviour.

For an indicator of non-strategic behaviour in the sense of ‘random-clicking’,
I use the estimated proportions of level-0 play given in Table 9, as the former
will be shaped by salience and the latter is defined as following salience. Among
the models not restricted to a hump-shaped level distribution, only Lksoph-pick-
B(2)

[

A(3)A(1)

]

A(4) indicates a substantial fraction of level-0 play. However, as
pointed out above, this model fits the original data of Rubinstein, Tversky and
Heller only unsatisfactorily. The same applies to the restricted model Lkunsoph-
postH&S-B(2)A(3)

[

A(1)A(4)

]

(which does not fit Heinrich and Wolff’s data well,
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rth’s data hw’s data
Specification L0 L1 L2 L3 L4 L0 L1 L2 L3 L4

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) 0.00† 0.19† 0.32† 0.24† 0.25† – 0.12 0.37 0.29 0.22

Lkunsoph-pick-B(2)

[

A(3)A(1)

]

A(4) 0.00 0.20 0.11 0.69 0.00 0.00 0.23 0.11 0.63 0.03

best ‘hump-shaped’ distribution 0.10 0.16 0.16 0.58 0.00 0.02 0.18 0.18 0.53 0.09
Lkunsoph-postH&S-B(2)A(3)

[

A(1)A(4)

]

0.00 0.28 0.10 0.62 0.00 0.08 0.30 0.00 0.62 0.00

best ‘hump-shaped’ distribution 0.40 0.12 0.12 0.36 0.07 0.78 0.02 0.02 0.18 0.07
Lksoph-pick-B(2)

[

A(3)A(1)

]

A(4) 0.48 0.12 0.14 0.26 0.00 0.30 0.18 0.14 0.38 0.00

best ‘hump-shaped’ distribution 0.26 0.18 0.18 0.38 0.00
Lksoph-postH&S-B(2)A(3)

[

A(1)A(4)

]

0.00 0.20 0.37 0.43 0.00 0.00 0.23 0.28 0.49 0.00

Table 9: Level-k distributions of the maximum-likelihood estimates in Table 8.
The first four data columns use the data from Rubinstein, Tversky, and Heller’s
collected studies (“rth”), reproduced in ci’s Table 3. Columns five to eight repli-
cate the findings using Heinrich and Wolff’s (2012; “hw”) data. † indicates the
estimate is taken from ci’s paper.

either). Hence, the models either do not indicate a large fraction of non-strategic
behaviour or they fit the data poorly, in which case we should doubt their validity
as an indicator of behaviour.

3.6 Overfitting

Like Crawford and Iriberri (2007), I want to assess the models’ ability to predict
out of sample rather than their flexibility in fitting the data. Following their pro-
cedure, I estimate each model on each study to ‘predict’ the data of the other
studies, using the resulting average MSEs as a criterion.27 However, by the logic
of this paper, I cannot use data from all of Rubinstein, Tversky, and Heller’s treat-
ments as done by Crawford and Iriberri: a hide-and-seek game using “1”, “2”,
“3”, and “4” as locations may have a completely different salience structure than
the archetype ABAA-protocol I have focused on. Hence, I only use data from
the three studies employing the ABAA-protocol: the data from the correspond-
ing treatment in Rubinstein, Tversky and Heller (1996), the data from Rubin-
stein (1999), and the data from Heinrich and Wolff (2012). Furthermore, I only
include five models in the analysis. These are eqm+-hyp-

[

A(1)A(4)

]

, CI’s pre-
ferred model Lk-hyp-

[

A(1)A(4)

]

B(2)A(3), and the three level-k models with the
best model fit under a salience-seeking L0 that follows an empirically-elicited
salience pattern: Lk-pick-B(2)

[

A(3)A(1)

]

A(4), Lkunsoph-pick-B(2)

[

A(3)A(1)

]

A(4),
and Lksoph-postH&S-B(2)A(3)

[

A(1)A(4)

]

. Table 10 presents the results.

27Note that the above MSEs are not comparable to those in Tables 5 and 8: the former are pre-
diction errors of an out-of-sample prediction, the latter were merely a goodness-of-fit measure.
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eH resp. L1 fH resp. L2 eS resp. L3 fS resp. L4 RTH-4 R-ABAA HW Average MSE

eqm+-hyp-
[

A(1)A(4)

]

: overall MSE = 0.00637

RTH-4 0.33 0.14 0.27 0.03 – 0.00904 0.00598 0.00751
R-ABAA 0.41 0.36 0.25 0.26 0.00856 – 0.00526 0.00691
HW 0.38 0.29 0.1 0.02 0.00501 0.00438 – 0.00469

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3): overall MSE = 0.00364

RTH-4 0.25 0.27 0.48 0 – 0.00315 0.00250 0.00283
R-ABAA 0.2 0.37 0.26 0.17 0.00418 – 0.00251 0.00334
HW 0.12 0.37 0.29 0.22 0.00527 0.00425 – 0.00476

Lk-pick-B(2)

[

A(3)A(1)

]

A(4): overall MSE = 0.01873

RTH-4 0.19 0 0.61 0.2 – 0.02648 0.01516 0.02082
R-ABAA 0.2 0 0.8 0 0.01818 – 0.01448 0.01633
HW 0.23 0 0.69 0.08 0.01564 0.02245 – 0.01905

Lkunsoph-pick-B(2)

[

A(3)A(1)

]

A(4): overall MSE = 0.00814

RTH-4 0.19 0.07 0.6 0.14 – 0.01361 0.00671 0.01016
R-ABAA 0.2 0.07 0.73 0 0.00666 – 0.00519 0.00593
HW 0.23 0.11 0.63 0.03 0.00699 0.00969 – 0.00834

Lksoph-postH&S-B(2)A(3)

[

A(1)A(4)

]

: overall MSE = 0.00566

RTH-4 0.01 0.26 0.48 0.25 – 0.01264 0.00487 0.00876
R-ABAA 0.19 0.31 0.5 0 0.00484 – 0.00167 0.00326
HW 0.23 0.28 0.49 0 0.00440 0.00554 – 0.00497

Table 10: Mean squared prediction errors (MSE) for the studies indicated in the
columns that result when parameters are fitted to the study indicated in the row.
RTH-4 refers to Rubinstein, Tversky and Heller’s (1996), R-ABAA to Rubinstein’s
(1999) and HW to Heinrich and Wolff’s (2012) ABAA-treatment.

Observation 8. The best-fitting model that is based on an empirically-elicited
salience pattern yields better out-of-sample predictions than the equilibriummodel
with hard-wired payoff perturbations aswell as the other level-kmodels based on
empirically-elicited salience patterns. Surprisingly, it is outperformed clearly by
Crawford and Iriberri’s preferred level-k model Lk-hyp-

[

A(1)A(4)

]

B(2)A(3) that
relies on a salience pattern that is not in accordance with any of the empirical
measures of salience.

Observation 8 rests on a comparison of the overall mean squared prediction
errors reported in bold in Table 10.

3.7 Portability

Much like Crawford and Iriberri (2007), I next look at whether we can use the
models estimated before to predict behaviour in another game. However, fol-
lowing the critique by Hargreaves Heap, Rojo Arjona and Sugden (2014), I use a
coordination and a discoordination game played on an ‘A-B-A-A’ action set that
was presented exactly like the one in the hide-and-seek game. Hargreaves Heap,
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3 RESULTS

Rojo Arjona and Sugden show that it is not possible to find a common level-
0 that would allow to predict behaviour in these three games simultaneously.
Given that the game description seems to influence participants’ perceptions of
salience (Observation 3), allowing for a different level-0 in each game seems to
be acceptable—as long as this is done in an objective manner. For this purpose,
we repeat the Guessing Task after participants have played the coordination
(postCoord task) or discoordination game (postDiscoord task), respectively,
without feedback.28 Table 11 shows the results.

A(1) B(2) A(3) A(4)

postCoord Task (72 participants)
average estimated relative click frequency 19 50 18 14

postDiscoord Task (72 participants)
average estimated relative click frequency 20 37 24 19

Table 11: Salience assessments of the four boxes denoted by “A”, “B”, “A”, and “A”.
The postCoord Task is the Guessing Task after participants played the coor-
dination game, the postDiscoord Task the same task after participants played
the discoordination game, again without feedback.

Observation 9. The postCoord and postDiscoord Tasks confirmObservation
3, in that the game description changes participants’ estimate of what people in
a non-strategic situation will regard as salient.

Observation 9 becomes obvious from Table 11 by focusing on the estimates
for locations B(2) and A(4). While in the postDiscoord Task, the latter is virtu-
ally identical to players’ estimate on A(1), there is a clear difference in the post-
Coord Task.29 At the same time, the average estimate on B(2) is clearly higher
in the postCoord Task compared to the postDiscoord Task.30

Table 12 reports the choices in the coordination and discoordination games
proper, next to the predictions of Crawford and Iriberri’s preferred model Lk-
hyp-

[

A(1)A(4)

]

B(2)A(3) and themodifiedmodelswith ‘sophisticated’ higher-level
players based on the postCoord-Task and postDiscoord-Task data, respec-
tively. With respect to the postDiscoord Task, I interpret the data such that

28All procedures as in Post-Game Guessing. No participant had participated in any other of
the experiments described in this paper.

29Two-sided Wilcoxon matched-pairs signed-ranks tests yield p = 0.174 and p = 0.001,
respectively.

30A two-sided Wilcoxon Mann-Whitney test yields p < 0.001.
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A(1) B(2) A(3) A(4) mse

Coordination game (72 participants)
Choices (in %) 18 69 11 1

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3)

Prediction without errors 50 0 0 50 0.20768
Lk(un)soph-postCoord-B(2)

[

A(1)A(3)

]

A(4)

Prediction without errors 0 100 0 0 0.03518

Lksoph-postCoord-indL0 (ML estimate)
Prediction without errors 10 78 9 2 0.00381

Discoordination game (72 participants)
Choices (in %) 15 26 40 18

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3)

Prediction without errors 28 22 22 28 0.01523
Lk(un)soph-postDiscoord-B(2)A(3)

[

A(1)A(4)

]

Prediction without errors 14 44 28 14 0.01213

Lksoph-postDiscoord-indL0 (ML estimate)
Prediction without errors 20 37 23 19 0.01076

Table 12: Choices in and predictions for the coordination and discoordination
games. The predictions rest on the estimated fractions of level-k types reported
in Table 8. For the modified model allowing for a heterogeneous level-0 (-indL0),
I report the maximum-likelihood estimate.

A(1) and A(4) are equally salient. Both predictions use the corresponding esti-
mated level-k distribution from the hide-and-seek game.31

Main Result 3. Neither Crawford and Iriberri’s (2007) preferred model nor the
modified variant proposed in this paper predicts well the coordination-game and
discoordination-game data. The former predicts poorly even qualitatively in both
the coordination and the discoordination games, while the latter predicts the
qualitative pattern in the coordination game but not in the discoordination game.

To see this, note that the modal choice in the coordination game isB(2), while
CI’s preferred model Lk-hyp-

[

A(1)A(4)

]

B(2)A(3) would predict that only players
making an errorwould choose this location. Similarly, Lk-hyp-

[

A(1)A(4)

]

B(2)A(3)

with a level-k distribution as estimated in the hide-and-seek game predicts that
in the discoordination game, most participants choose A(1) and A(4), when in
fact, the modal choice is A(3) (and A(1) and A(4) are chosen least often). The

31For the modified level-k model, I use the estimate based on Heinrich and Wolff’s (2012) data
because that data comes exclusively from the A-B-A-A setup.
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modified model predicts too concentrated a choice distribution in the coordi-
nation game (all choices vs. 69% on B(2)), and the wrong modal choice in the
discoordination game (44% on B(2) vs. 40% on A(3), while correctly predicting
low choice-frequencies for A(1) and A(4)).

Main Result 3 establishes that none of the level-k models can account for the
data of all three experiments even when we acknowledge that the game descrip-
tions change participants’ salience perceptions. Note, however, that up to now,
we stuck to the assumption that all players have the same idea of what is salient.
This is empirically wrong. Looking at the postDiscoord Task as an example,
only 60% of the participants estimate that B(2) is clicked on most often in the
Picking Task, followed by 19% for A(3) and 10% for each A(1) and A(4). Taking
this seriously calls for a model that allows every player to have their own level-
0. I look at this possibility exemplarily for the coordination and discoordination
games in the following section.

3.8 Salience-based level-k with a heterogeneous level-0

In the final lines of each part in Table 12, I report maximum-likelihood estimates
for the modified level-k model when participants use their respective own in-
dividual postCoord/postDiscoord Task responses as level-0.32 To give an ex-
ample, assume that a participant in the postDiscoord Task estimates responses
in the Picking Task to follow the distribution 10%, 45%, 15%, and 30% for A(1),
B(2), A(3), and A(4), respectively. In that case, the prediction for the partici-
pant’s behaviour in the discoordination game would be that she chooses A(1)

for certain in case she is level-1 or level-3, and that she chooses B(2), A(3), and
A(4) with probabilities 1/2, 1/6, and 1/3, respectively, in case she is level-2 or
level-4. The maximum-likelihood estimate for the discoordination game yields a
combined 13% of level-1 and level-3 players and a combined 87% of level-2 and
level-4 players.33

Main Result 4. Basing the level-kmodel on individual post-game guessing-task
estimates as L0 improves the model’s fit to the coordination-game data. Yet, the
maximum-likelihood estimate even of this model does not produce a prediction
that would capture the essential features of the discoordination-game data.

The first part of Main Result 4 results from comparison of mean squared pre-
diction errors in the last column of Table 12. Notwithstanding, a χ2-test on the

32Note that for the coordination game, Lk(un)soph-postCoord-indL0 makes the same predic-
tions as a Lk-postCoord-indL0model. For the discoordination game, the two differ only slightly
(and not at all in terms of the estimated level-k distributions). The ‘sophisticated’ and the ‘un-
conscious’ modified models make the same predictions in both games.

33In the coordination game, all level-k distributions yield the same likelihood given all levels
act in the same way.
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data under the hypothesis that the data stems from the model’s predicted dis-
tribution still yields p ≈ 0.14. The second part results from the fact that the
predicted choice distribution also of the model Lksoph-postCoord-indL0 pre-
dicts the modal choice to be B(2) rather than A(3). The according χ2-test yields
p = 0.008.

4 Summary and discussion

The data gathered by Rubinstein, Tversky and Heller in their hide-and-seek ex-
periments pose a serious challenge to Nash-equilibrium as a descriptive theory
of behaviour. Up to today, two explanations have been proposed. Rubinstein and
Tversky (1993; p. 402) claim that participants would fail to reason strategically
and “[employ] a naïve strategy (avoiding the endpoints), that is not guided by
valid strategic reasoning.” If that were so, we would expect them to choose sim-
ilarly to what they would pick if they had to click on any of the boxes without
there being a game: according to the options’ salience. Observation 4 estab-
lishes that salience-clicking is a bad predictor for aggregate behaviour in hide-
and-seek games, and Observation 7 suggests that this is likely to be true also
for virtually all participants individually.

A second explanation has been proposed by Crawford and Iriberri (2007).
They propose a level-k model that is based on salience and convert Rubinstein,
Tversky and Heller’s account of what is salient into latent model parameters.
They estimate the qualitative salience pattern to be such that “central A” is the
least salient location, followed by “B”, leaving the two “endAs” as themost salient
locations. Based on this salience pattern, Crawford and Iriberri (2007) present a
model that fits the data almost as well as a benchmarkmodel based on hard-wired
payoff perturbations, and that outperforms any other model they study in terms
of out-of-sample predictions. However, in all five empirical salience measures for
the ABAA-setup I elicited, “B” turned out as the most salient (Observation 1)
and “final A” as the least salient location (possibly in conjunction with “first A”;
Observation 2). The natural question to be answered was then whether a level-
k model based on the empirically-elicited salience patterns would do equally
well as a descriptor/predictor of behaviour. Main Result 1 and Observation 5

clearly show this is not the case, and that the best-fitting estimates, on top of hav-
ing a poor fit to the data, exhibit level-k type distributions that are implausible.
Coincidentally, the benchmark equilibrium models with salience-based payoff
perturbations fit the data similarly badly when based on the empirically-elicited
salience patterns (Observation 6).

Does this mean a level-k model cannot be used to account for behaviour in
hide-and-seek games at all? The answer is no. By modifying the model such that
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a level-k player will choose according to the salience of a location (consciously or
not) whenever the player would be indifferent under pure payoff considerations,
I obtain a model that has a fit of similar order as the best-performing models
presented by Crawford and Iriberri (2007; Main Result 2). Furthermore, this
model outperforms all other empirical-salience-based models in terms of its fit
to the data.

Beyond any doubt, a model’s usefulness is determined by howwell the model
can predict data rather than how well it does in ex-post fitting exercises. Because
of that, Crawford and Iriberri (2007) perform tests of how well their model does
in out-of-sample as well as in out-of-game predictions. For the latter, they use
data from two additional games that have different action sets—and therefore,
potentially also a different salience structure. Hence, they need additional as-
sumptions on what the salience structure will be in those games. Hargreaves
Heap, Rojo Arjona and Sugden (2014) avoid this problem by using data from a
coordination and a discoordination games on the same action-set frames as in
the hide-and-seek game. Using this approach, they show at a general level that
calibrating salience and the type distributions on the hide-and-seek game data
does not allow to predict behaviour in their coordination and discoordination
games.

Do Hargreaves Heap, Rojo Arjona and Sugden’s findings mean level-k can-
not explain behaviour from the different laboratory experiments? Not neces-
sarily, as Observations 3 and 9 suggest that players’ salience perception may
change across different games with the same action-set frames. Interpreted in
this way, my results suggest that not being able to account for data from three
different gameswhen assuming the same level-0 could constitute a solvable prob-
lem for the theory. However,MainResult 3 establishes that the conclusion Har-
greaves Heap, Rojo Arjona and Sugden draw is correct even if we do account for
a changing level-0: in out-of-game predictions, Crawford and Iriberri’s preferred
model does badly. When I subject the modified level-k model based on empirical
salience measures to the same test, it does slightly better, but it clearly fails to
explain the data in the discoordination game (Main Result 3).

Up to this point, all authors including myself have assumed that at least
within each game, there is a unique level-0 that is the same for all players.34

A closer look at the data from the experiments presented in this study reveals
this assumption is unwarranted, too. Data from guessing-task experiments con-
ducted after the different games with no feedback in between are by no means
homogeneous in terms of what participants expect others to choose in a Pick-

ing Task. Therefore, we need to analyse behaviour taking into account het-

34A notable exception is Burchardi and Penczynski (2014), who allow for different guesses
about the behavior of non-strategically-acting players in a beauty-contest game.
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erogeneous salience perceptions. I do this exemplarily using the coordination-
game and discoordination-game data. MainResult 4 shows that basing a level-k
model on individual post-game guessing-task estimates as level-0 can improve
the model’s fit to the data. Unfortunately, it also shows that a heterogeneous
level-0 still does not allow to understand the data from the discoordination game.

Beyond a doubt, the results presented in this paper pose a serious challenge
to level-k theory. If level-k theory is to be considered as a candidate for explain-
ing behaviour in hide-and-seek data also in the future, it has to be modified in
a way that provides an explanation also for the results presented here. And yet,
we need to bear in mind that there is no other model at hand that can explain
the recurrent features of the hide-and-seek data. Also, note that studies like Bur-
chardi and Penczynski (2014) find empirical support for level-k-like reasoning in
a clever design that allows to observe participants’ reasoning rather than only
their choices. What do the results mean, then? They may mean that only a sub-
set of participants really follow level-k reasoning. For the remaining (majority of
the) participants, we may have to look for different models to understand their
behaviour.
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Appendix

Alternative payoff-perturbed game

Here, I present the game with hard-wired payoff perturbations whenA(4) is least
salient without A(1). Under the additional simplifying assumption that A(1) and
A(3) are equally salient, we obtain the game shown in Table A.1.35 Again, we
should expect e > 0 and f > 0.

Seeker

A(1) B(2) A(3) A(4)

Hider

A(1)
1 0 + f 0 0− e

0 1 1 1

B(2)
0 1 + f 0 0− e

1− f 0− f 1− f 1− f

A(3)
0 0 + f 1 0− e

1 1 0 1

A(4)
0 0 + f 0 1− e

1 + e 1 + e 1 + e 0 + e

Table A.1: The hide-and-seek game with payoff perturbations when A(4) is the
single least salient location and A(1) and A(3) are equally salient.

Full version of estimation-result Tables 5 and 6

On the next page, I include the Table-5 equivalent containing all estimated mod-
els, as well as the corresponding level-k distributions, including those reported
in Table 6.

35This assumption can be based on the observations from the Guessing Task and, arguably,
from the locations’ average ranks in the Beauty Contest.
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Specification Data L1 L2 L3 L4 logL MSE

Choices follow salience

naïve-pick-B(2)

[

A(1)A(3)

]

A(4) rth – – – – -1724 0.01271

naïve-postH&S-B(2)A(1)

[

A(3)A(4)

]

rth – – – – -1687 0.01647

Equilibrium models

eqm0 rth – – – – -1641† 0.00967†

eqm+-hyp-[A(1)A(4)] rth – – – – -1562† 0.00006†

(eH = 0.29, fH = 0.25, eS = 0.15, fS = 0.15)
eqm+-postH&S-B(2)A(3)

[

A(1)A(4)

]

rth – – – – -1636 0.00909

(eH = 0.00, fH = 0.06, eS = 0.00, fS = 0.05)
eqm+-hyp-

[

A(1)A(3)

]

rth – – – – -1608 0.00744

(eH = 0.08, fH = 0.08, eS = 0.17, fS = 0.12)
eqm+-pick-B(2)

[

A(1)A(3)

]

A(4) rth – – – – -1636 0.00909

(eH = 0.00, fH = 0.06, eS = 0.00, fS = 0.05)

CI’s preferred model

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) rth 0.19† 0.32† 0.24† 0.25† -1564† 0.00027†

Lk-pick-B(2)

[

A(1)A(3)

]

A(4) rth 0.21 0.00 0.79 0.00 -1635 0.00903

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

rth 0.31 0.00 0.69 0.00 -1664 0.01202

CI’s model with asymmetric L0
Lk-pick-B(2)

[

A(1)A(3)

]

A(4)-asym rth 0.00 0.15 0.64 0.21 -1632 0.00782

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-asym rth 0.08 0.26 0.32 0.34 -1603 0.00556

CI’s model with salience-avoiding L0
Lk-pick-B(2)

[

A(1)A(3)

]

A(4)-avoid rth 0.00 0.79 0.06 0.15 -1632 0.00782

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-avoid rth 0.12 0.46 0.20 0.22 -1603 0.00556

Choices follow salience

naïve-pick-B(2)

[

A(1)A(3)

]

A(4) hw – – – – -521 0.01654

naïve-postH&S-B(2)A(3)

[

A(1)A(4)

]

hw – – – – -487 0.01662

Equilibrium models

eqm0 hw – – – – -484 0.01436
eqm+-hyp-[A(1)A(4)] hw – – – – -456 0.00109

(eH = 0.38, fH = 0.29, eS = 0.10, fS = 0.02)
eqm+-postH&S-B(2)A(3)

[

A(1)A(4)

]

hw – – – – -483 0.01467

(eH = 0.00, fH = 0.04, eS = 0.00, fS = −0.05)
eqm+-hyp-

[

A(1)A(3)

]

hw – – – – -480 0.01712

(eH = 0.12, fH = 0.08, eS = −0.03, fS = −0.06)
eqm+-pick-B(2)

[

A(1)A(3)

]

A(4) hw – – – – -482 0.01485

(eH = 0.00, fH = 0.04, eS = −0.03, fS = −0.06)

CI’s preferred model

Lk-hyp-
[

A(1)A(4)

]

B(2)A(3) hw 0.12 0.37 0.29 0.22 -456 0.00110

Lk-pick-B(2)

[

A(1)A(3)

]

A(4) hw 0.23 0.00 0.70 0.07 -482 0.01358

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

hw 0.32 0.00 0.59 0.09 -485 0.01538

CI’s model with asymmetric L0
Lk-pick-B(2)

[

A(1)A(3)

]

A(4)-asym hw 0.08 0.10 0.65 0.17 -484 0.01320

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-asym hw 0.19 0.09 0.50 0.23 -465 0.00640

CI’s model with salience-avoiding L0
Lk-pick-B(2)

[

A(1)A(3)

]

A(4)-avoid hw 0.00 0.75 0.07 0.18 -484 0.01320

Lk-postH&S-B(2)A(3)

[

A(1)A(4)

]

-avoid hw 0.03 0.56 0.17 0.24 -465 0.00639

Table A.2: Full version of Tables 5 and 6 combined: maximum-likelihood esti-
mates, log-likelihoods, andmean squared errors of the fit for the differentmodels,
using the data from Rubinstein, Tversky, and Heller’s collected studies (“rth”),
reproduced in Table 3 of Crawford and Iriberri (2007; “ci”). †indicates the esti-
mate is taken from ci’s paper. The table’s lower half replicates the upper-half
findings using Heinrich and Wolff’s (2012; “hw”) data.




