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Abstract

In the two-person sequential best shot game, first player 1 contributes to a public good

and then player 2 is informed about this choice before contributing. The payoff from the

public good is the same for both players and depends only on the maximal contribution.

Efficient voluntary cooperation in the repeated best shot game therefore requires that

only one player should contribute in a given round. To provide better chances for such

cooperation, we enrich the sequential best shot base game by a third stage allowing the

party with the lower contribution to transfer some of its periodic gain to the other party.

Participants easily establish cooperation in the finitely repeated game. When coopera-

tion evolves, it mostly takes the form of “labor division,” with one participant constantly

contributing and the other constantly compensating. However, in a treatment in which

compensation is not possible, (more or less symmetric) alternating occurs frequently and

turns out to be almost as efficient as labor division.
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1 Introduction

Probably the most important institutional aspect enabling voluntary cooperation in homo sapi-

ens as well as in other species of the animal kingdom is the so-called “shadow of the future” (Dal

Bó, 2005).1 This shadow of the future means awareness that we interact with the same others

repeatedly and that present choices will influence future ones. It has been demonstrated by

numerous experimental studies of repeated interaction how this allows for mutually beneficial

voluntary cooperation until its endgame decline.

Game theoretically such voluntary cooperation can be justified by (i) an infinite horizon so

that there is always a future after finitely many rounds of play, (ii) multiplicity of equilibria

in the base game allowing deviations from cooperative play to be punished by switching to

some worse equilibrium, or (iii) some (supposed, see Kreps et al., 1982, or experimentally

induced, see Anderhub et al., 2002; Brandts and Figueras, 2003) form of incomplete information

enabling strategic reputation formation. The problem with (i) is that there usually exists a

commonly known upper bound for the number of repetitions that one can run in an experiment.

For a finite horizon, (ii) allows for subgame perfect equilibria with voluntary cooperation.

Type (iii) equilibria account for initial voluntary cooperation by strategically mimicking the

behavior of intrinsically motivated cooperators. Thus, at least probabilistically, they presuppose

such motivation, which most studies in the literature want to confirm and explain instead of

presupposing it. Subgame perfect equilibria of type (i) and (ii) violate subgame consistency (see

Selten and Güth, 1982) requiring that behavior should only depend on the rules of the subgames

and not on past moves without any influence on these rules. From the robust experimental

evidence of voluntary cooperation, one can conclude that this requirement may be normatively

appealing but is definitely not in line with how we reason in repeated interaction. In such

situations we usually react to what has happened before, even when this does not affect the

rules we are facing now (see Axelrod, 1984).

How we react to the past in order to establish and maintain voluntary cooperation up to an

endgame effect has been well studied for repeated interactions in simultaneous and symmetric

move base games (for some review, see Camera and Casari, 2009). In our study, we consider

1Güth et al. (2007) compare payoff sharing, resembling kinship, with the shadow of the future and show
that varying the shadow of the future (the time horizon) is much more influential than varying the degree of
payoff sharing.
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a sequential and asymmetric game. For such games, it is less obvious than for the usually

employed simultaneous and symmetric games how voluntary cooperation will evolve. Although

this will typically rely on some “tit for tat,” neither the “tit” nor the “tat” may be obvious. In

our view, the ambiguity of “tit for tat” is captured nicely by our finitely repeated base game,

referred to as Modified Sequential Best Shot, MSBS.

Its two players, 1 and 2, are subjected to the following rules in each of the finitely many

rounds: first, player 1 chooses c1 with 0 ≤ c1 ≤ e, where e is the positive endowment of each

player, and informs player 2 about c1. Then player 2 chooses c2 with 0 ≤ c2 ≤ e and informs

player 1 about c2. Finally, if there is a unique player i with ci < cj for i, j = 1, 2, this player

i can transfer any amount t with 0 ≤ t ≤ e to player j (6= i). The payoffs for both, players

1 and 2, consist of three parts, namely the non-spent endowment and the monetary effects of

public good provision as well as of compensating. The payoff from the public good is the same

for both players and depends only on the maximum of c1 and c2, i.e., only the “best shot”

counts. We apply a nonlinear rule how the maximal contribution affects the payoff from the

public good to allow for interior individually and socially optimal contributions.2 Player j with

cj > ci may further receive a positive monetary transfer t from player i whose payoff is reduced

by t. Of course, both players, 1 and 2, have to pay their individual contribution cost, c1 and

c2, respectively.

Voluntary cooperation can be implemented by some positive cj and ci = 0 in each round.

Will participants learn to establish and maintain this form of cooperation? And if so, will

cooperation be in the form of alternating with 1 and 2 taking turns in being the positive

contributor j or free rider i, or via compensating in the form of labor division with either

player 1 or 2 constantly contributing and the other “freeriding” but compensating? Whereas

alternating is more or less symmetric since both players take turns in being the only contributor

and the free rider, compensating requires coordination on asymmetric labor division. In the

latter case, the only and constant contributor determines the efficiency of voluntary cooperation,

what may be possibly influenced by how much equality has been created in the past via the

monetary transfers of the constant free rider. Finally, is it the first or the second mover who is

constantly contributing or does this vary non-systematically across pairs?

2This way, we avoid the disadvantage of “corner solutions” allowing only one-sided deviations and thereby
confounding (non-)cooperation with noise.
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We find that in roughly half of the observations maximum contributions realize the full effi-

ciency gain, with no substantive differences across treatments. However, the dominant form of

voluntary cooperation depends on the details of the game. While the ex post transfer payment,

if allowed by the treatment, is frequently used to establish cooperation in the form of “freeriding

but compensating,” participants are well able to coordinate on alternating contributions if not

allowed to use the transfer. Furthermore, we distinguish whether or not the lower of the two

contributions (if any) is refunded to its contributor. This makes a difference for cooperation

in that with no refund players seem to consider their decisions more seriously, thus enhancing

cooperation.

Our study relates to the small literature on turn-taking in asymmetric coordination games

(battle-of-the-sexes games). In such games, turn-taking between the two efficient but asymmet-

ric base game equilibria is a way to equalize payoffs in the long run. To establish cooperation

during the initial phase of play, the theoretical models of Lau and Mui (2012, 2008) and Bhaskar

(2000)3 suggest that players randomize over both their strategies until the first match occurs.

Evans et al. (2013) test these models in an experiment and find evidence for turn-taking be-

havior, in particular when cheap talk communication among players is allowed. Compared to

these games, the sequential structure of our base game avoids the initial phase of unintended

miscoordination and allows to detect strategic reasoning in a cleaner way.

The structure of this paper is as follows. In Section 2, we present the experimental design

and procedures as well as some behavioral predictions. The experimental results are described

in Section 3. Section 4 concludes.

2 Experimental design and procedures

2.1 Design

Participants in the experiment take part in three subsequent supergames with 20 rounds each.

In each of the three successive supergames, they meet a new partner (perfect strangers design),

but within supergames the matching is fixed. Both players i = 1, 2 receive an endowment of

3See also the comment by Kuzmics and Rogers (2012).
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100 points in each round. Contributions can vary in steps of 10 points from 0 to 100. Player 1

chooses c1 in stage 1; player 2, knowing c1, can thus react to c1 when determining c2 in stage 2.

Finally, in stage 3, the lower contributor can transfer any amount t ∈ [0; 100] to the maximal

contributor. If both contribute the same, there is no transfer. How much the players gain from

the maximal contribution is captured by the discrete function f (max {c1, c2}) which does not

vary across treatments and is presented in Table 1. The individually optimal contribution, given

that the other player contributes zero, is 20. Efficiency in the sense of maximizing the joint

payoff 2 · f(max{c1, c2})−max{c1, c2} requires max{c1, c2} = 80, yielding a surplus of 80 that

the two partners could share by an appropriate transfer t or by taking turns in contributing.

max{c1, c2} 0 10 20 30 40 50 60 70 80 90 100
f(max{c1, c2}) 0 27 40 47 55 61 67 73 80 83 85

Table 1: Payoffs implied by the maximal contribution

Treatments differ in the composition of periodic payoffs (see Table 2). The baseline treat-

ment Base assumes that the lower contribution is refunded. If both players contribute the same,

that is ci = cj for i, j = 1, 2 and i 6= j, it is randomly determined who receives the refund. The

payoff for i = 1, 2 is ui = 100−ci +f(max{c1, c2})+t if either ci > cj or ci = cj and i is not ran-

domly refunded. Otherwise, the payoff is ui = 100+f(max{c1, c2})−t. The AllPay treatment

assumes that contributions must be paid regardless whether or not they determine the payoffs

from the public good. The payoffs of this treatment are ui = 100 − ci + f(max{c1, c2}) + δit

where δi = +1 if ci > cj and δi = −1 if ci < cj. If ci = cj, the transfer t = 0 is imposed. The

NoTransfer treatment maintains the refund of the lower contribution but does not allow for

the transfer payment t. We allow versus exclude “Refund” only for “Transfer” and explore “No

transfer” only with “Refund” (see the treatment design in Table 2).

Treatment Refund of low contribution Transfer
Base yes yes
AllPay no yes
NoTransfer yes no

Table 2: Treatments
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2.2 Predictions

The benchmark solutions in the sense of finitely repeated elimination of dominated strategies

or subgame perfect equilibria can be determined by first considering the one-shot games as

depending on the treatment. Whereas solutions of AllPay require min{c1, c2} = 0 and

max{c1, c2} = 20 and t = 0, the set of solutions in Base and NoTransfer is larger by not

requiring min{c1, c2} = 0 but only max{c1, c2} = 20 and t = 0. Since t = 0, neither player

wants to be the contributor. However, player 1 can anticipate that player 2 will react to c1 = 0

by c2 = 20. This features player 2 as the only contributor: in Base and NoTransfer all

initial contributions c1 < 20 imply c2 = 20 in case of common(ly known) rationality. For the

finitely repeated base games these solutions are the stationary solution benchmarks since when

applying backward induction future behavior does not depend on what happened in previous

rounds. Thus, game theoretically, a maximum contribution of 20 by player 2 and no transfer

payments are predicted, irrespective of the treatment.

Neither labor division involving transfer payments t nor alternating are predicted by the

benchmark solution. However, behaviorally we expect to reject the hypothesis of solution be-

havior and predict that participants, as robustly confirmed by previous repeated social dilemma

experiments (see the overview by Chaudhuri, 2011), will cooperate rather efficiently. Unlike

game theoretically predicted, they will do so by rendering their behavior path dependent.

Experimentally, such path dependence in playing the recursive 20-round game is feasible by

implementing the appropriate information feedback after playing each round of the respective

base game. After each round, both players i = 1, 2 learn about c1 and player 2’s reaction c2

to c1, the transfer payment t, their periodic earnings ui as well as their accumulated earnings

during the current supergame so far.

2.3 Procedures

The experiment was computerized using z-Tree (Fischbacher 2007). A total of 264 students from

various disciplines recruited via ORSEE (Greiner 2004) took part in our experiments, 90 in both

Base and AllPay, 84 in NoTransfer. Each participant could register for only one session.

Matching was organized in groups of six so that we would have 15 (14) independent observations
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per treatment. Each matching group contained three player 1 resp. player 2 participants who

were then successively paired, guaranteeing a new partner for each supergame. The experiment

was run in Lakelab, the laboratory for experimental economics at the University of Konstanz.

The experiment lasted approximately 2 hours, including the time for reading the instructions

and answering a short postexperimental questionnaire. Subjects were paid a show-up fee of 3

euros. On average, participants earned 19 euros (including the show-up fee).

Before starting the experiment, subjects received written instructions on their computer

screen.4 To allow for more familiarity with the three-stage process, participants experienced

two trial rounds facing a predetermined decision making program in the other role. After that

they had to answer a few control questions before actually interacting with three subsequent

partners. At the end of each session, participants were individually called to the exit. They

received their payment in cash outside the laboratory with sufficient time between participants

to ensure privacy with respect to the amount of money they received.

3 Results

The dynamics of repeatedly playing the three successive supergames with new partners are illus-

trated in Figure 1 displaying the average ct = max{c1,t, c2,t} and the average ct = min{c1,t, c2,t}

over time. Table 3 additionally summarizes the distribution of ct across treatments and su-

pergames. The share of pairs with an efficient maximum contribution of 80 increases in all three

treatments from the first to the third supergame (p-value = 0.02 in Base, < 0.01 in AllPay,

0.11 in NoTransfer).5 This increase is most pronounced in AllPay, where in the third su-

pergame in 58 percent of all rounds and pairs the maximum contribution is 80 (“increase of %

efficient contributions from the first to the third supergame” in AllPay vs. increase in Base:

p = 0.05, NoTransfer vs. Base: p = 0.37).6 This increase in the share of efficient contribu-

tions in AllPay goes hand in hand with a relatively strong decrease of the individually optimal

4See the Appendix for a translated version of our instructions.

5If nothing else is stated, reported p-values refer to two-sided Wilcoxon signed rank tests, treating matching
groups as the unit of observation. For tests of differences between treatments, we similarly use two-sided
Wilcoxon rank sum tests.

6Similarly, the differences in the increases of max{c1,t, c2,t} from the first to the third supergame is statis-
tically significant when comparing AllPay and Base (p = 0.02) but not between NoTransfer and Base

(p = 0.76).
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contribution of 20. In all three treatments, the share of pairs with intermediate contributions

between 30 and 70 declines over time, from about 25 percent to below 15 percent. In the other

ranges of contributions, the shares are relatively stable over time. Whereas contributions below

20 are rationalizable by expectations that the other contributes, contributions above 80 could

only be justified by an extreme form of generosity (giving something to the other at higher

costs).
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1 20 21 40 41 60 .

1st supergame 2nd supergame 3rd supergame

Maximum contribution

0

10

20
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1st supergame 2nd supergame 3rd supergame

Minimum contribution

Base AllPay NoTransfer

Figure 1: Maximum and minimum contribution in all treatments over time
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SG Max < 20 Max = 20 20 < Max < 80 Max = 80 Max > 80
Base 1st 0.10 0.30 0.26 0.25 0.09

2nd 0.10 0.27 0.19 0.38 0.07
3rd 0.10 0.30 0.11 0.43 0.05

AllPay 1st 0.08 0.33 0.25 0.24 0.10
2nd 0.08 0.25 0.14 0.45 0.07
3rd 0.07 0.19 0.12 0.58 0.04

NoTransfer 1st 0.09 0.47 0.23 0.17 0.05
2nd 0.10 0.40 0.20 0.26 0.04
3rd 0.09 0.44 0.13 0.29 0.05

Table 3: Maximum contribution across supergames and treatments (SG: supergame, table
entries are the shares of contributions in the column range)

The high share of efficient contributions in AllPay also results in a relatively high average

maximum contribution of 60.50 points in this treatment in the third supergame.7 In Base the

average maximum contribution is 51.37, in NoTransfer it is 43.44. However, none of the

comparisons to the baseline treatment is statistically significant (AllPay vs. Base: p = 0.10,

NoTransfer vs. Base: p = 0.36). With respect to the difference between the maximum

and minimum contribution in a pair, we find that max{c1, c2} − min{c1, c2} is, with 59.51

points, significantly higher in AllPay than in Base (31.62 points) or NoTransfer (27.87

points) (both p’s < 0.01). Average profits per player (including efficiency losses in the AllPay

treatment due to both players contributing) are again very similar, with 132.99 in Base, 134.93

in AllPay, and 131.84 in NoTransfer.

Result 1 In terms of the average maximal contribution, the AllPay treatment experiences

the strongest increase over time and also reaches the highest level.

Result 2 Treatments NoTransfer and Base are similarly efficient.

Table 4 organizes subjects’ strategies according to the most prominent behavioral patterns.

The first pattern captures the cooperative “freeriding but compensating” strategy with one

player contributing 80 or more and the other compensating him by about half of this contribu-

tion. The second pattern captures a weaker version of category 1 with one player contributing

7Consistently, also average transfer payments are also higher in AllPay (26.69 points) than in Base (20.94
points), p = 0.11.
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on a lower level and the other transferring. The third pattern describes positive contributions

of one player that are not rewarded by transfers of the other. Instead, the other player often

symbolically contributes some positive but smaller amount that is refunded. The fourth pattern

captures the “alternating” strategy with both players taking turns in contributing.8 The fifth

pattern is again efficiency driven, but not always relying on the same player in contributing.

Instead, both players contribute the same amount, e.g., 80, and leave it to the randomization

who is refunded. Afterwards, there may be a transfer (if allowed by the treatment). The last

pattern is the residual category not fitting into any of the first five categories. A pattern of

play is assigned to one of the categories if decisions in at least 10 (not necessarily subsequent)

rounds out of the total of 20 rounds are in line with its description. Double classifications occur

only rarely and are treated as unclassifiable.

Category Base AllPay NoTransfer

1 0.38 0.47 —
2 0.18 0.22 —
3 0.20 0.02 0.24
4 0.04 0.18 (nearly all 80) 0.45 (two thirds 80)
5 0.07 (all 80) — 0.17 (5/7: 20)
6 0.13 0.11 0.14

Table 4: Strategies: 1 = “Freeriding but compensating”: one player contributes ≥ 80, the
other transfers ≥ 30 points. 2 = One player contributes varying amounts < 80, the other
transfers something. 3 = One player contributes varying amounts < 80, no transfer. 4 =
“Alternating”. 5 = Both contribute the same and leave it to the randomization who is refunded.
6 = Unclassifiable.

A chi-squared test rejects equality of the distributions for both, the comparison of Base

vs. AllPay (p < 0.02) and of Base vs. NoTransfer (p < 0.01).9 The transfer, if allowed

in a treatment, seems to play an important role for cooperation, as in Base and AllPay the

predominantly employed patterns are “freeriding but compensating” and the related category

2 (“freeriding but compensating with maximal contributions below 80”). However, being able

to compensate is not necessary for cooperation. Average contributions in NoTransfer are

relatively similar to Base due to participants employing a comparatively effective pattern like

alternating which is highly frequent in NoTransfer but hardly ever occurs in Base.

8We also treat a few observations as fitting to this, where one player contributes 80 in the first half of a
supergame while the other player does so in the second half.

9Here, we treat each pair as one independent observation.
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Result 3 “Compensating” dominates “alternating” in implementing voluntary cooperation when

available (treatment Base).

When comparing AllPay with Base, both cooperative strategies “freeriding but compen-

sating” and “alternating” are more frequently used without refunding. This may be driven by

more serious decision making in AllPay. In Base the average lower contribution min{c1,t, c2,t}

in a pair in the third supergame is still equal to 19.74, while it is 0.99 in AllPay (15.57 in No-

Transfer). The difference of min{c1,t, c2,t} between AllPay and Base is statistically highly

significant (p-value < 0.01), while it is clearly insignificant when comparing NoTransfer and

Base (p-value = 0.56). According to Table 4, in Base and in NoTransfer around one fifth

of the pairs use the third strategy. Here, often one of the two players symbolically contributes

some amount smaller than her partner in order to pretend that they are also willing to coop-

erate – without any real payoff consequences. To some extent, this reasoning seems to work

in establishing efficient contributions but not as well as when contributions are truly costly.

In AllPay, such cheap talk is costly since there is no refunding. Thus, the “stricter” rules

of the AllPay treatment discourage cheap measures and thereby make participants focus on

establishing efficient voluntary cooperation.

Result 4 Inclusion of costless messages in the form of lower contributions that are refunded

(Base and NoTransfer) renders voluntary cooperation less efficient than when all contri-

butions are costly (AllPay treatment).

Contrary to the solution play, it is not always the second mover who contributes. Consid-

ering only strategies 1 to 3, which employ labor division, we find that in 22 out of 34 cases in

Base, in 17 out of 32 cases in AllPay, and in 5 out of 10 cases in NoTransfer it is indeed

the first mover who contributes more. This suggests that player 1 expects player 2 to react

reciprocally, either by compensating or by alternating. Contributing nothing as player 1 could

be perceived by player 2 as indicating unwillingness to cooperate, which would make player 2

pessimistic about player 1 transferring an appropriate amount when player 2 contributes. By a

high contribution, a cooperatively minded player 1 can avoid that player 2 is uncertain about

player 1’s intentions.
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Result 5 Contrary to the game theoretical prediction, player 1 participants often contribute

more than their partner.

Let us finally explore how endgame behavior for the sequential best shot game depends

on the treatment. When voluntary cooperation breaks down toward the end, i.e., when ap-

proaching the 20th round, how does this happen? Due to the rather continuous action space

(0 ≤ ck ≤ e for k = 1, 2), the endgame effect might not set in with a complete collapse of vol-

untary cooperation. Since any breakdown may occur earlier or later, Figure 2 illustrates the

maximal and minimal contributions as well as the transfer in the four last rounds in all treat-

ments, separately for the three supergames.

In Base there is a slight decline in the maximum contribution from round 18 to 19 (sig-

nificant only in the second supergame, p = 0.05) and a slightly stronger one from round 19

to 20 (significant only in the third supergame, p = 0.06) in all supergames. The minimum

contribution does not significantly change during the endgame in either supergame. However,

the transfer payment drops significantly from round 18 to 19 and again from round 19 to 20

in all supergames (all p-values ≤ 0.05). Thus, in treatment Base a breakdown of cooperation

by the end of a supergame seems to start at the transfer rather than at the contribution stage.

In AllPay both the maximum contribution and the transfer decline mainly in the last round

of a supergame, an observation that is statistically significant in all supergames.10 In AllPay

an endgame effect therefore concentrates in the last round and seems to be driven by a decline

in contributions, which is naturally followed by a reduction of transfer payments. In the No-

Transfer treatment, similar to the Base treatment, there is a slight decline in the maximum

contribution from round 18 to 19 in the second supergame (p-value = 0.03) and another one

from round 19 to 20 in the third supergame (p-value = 0.08).

10The corresponding p-values for the change from max{c1,19, c2,19} to max{c1,20, c2,20} are 0.1 (1st supergame)
and 0.03 (2nd and 3rd supergame). For the change in the transfer payment, the p-values are 0.02 (1st supergame)
and < 0.01 (2nd and 3rd supergame).
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Figure 2: Maximum contribution, minimum contribution, and transfer during the endgame.
The dotted line refers to the first supergame of a treatment, the dashed line to the second
supergame, and the solid line to the third one.
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4 Conclusion

Compared to simultaneously playing a best shot game, sequentially contributing alleviates co-

ordinating voluntary cooperation. To establish constant labor division, the first contributor

may simply take on the role of constant contributor until the other fails to compensate. Simi-

larly, to implement alternating, the first mover might begin by contributing. Actually, in more

than half of the pairs engaging in constant labor division, player 1 is the constant contributor,

and in more than two thirds of the pairs displaying an “alternating” pattern, player 1 is the

first contributor. The high efficiency level of all three treatments may thus have been expected.

By our three treatments, we additionally demonstrate that aiming at efficient and fair vol-

untary cooperation is hardly troubled by any difficulties in implementing it. If compensations

are possible, they are used predominantly. If not, players establish alternating. It seems that

player 1 bears the main responsibility for the beginning and the level of voluntary coopera-

tion, whereas player 2 determines by compensating rather than alternating that constant labor

division should be employed when feasible.

More basically, best shot games differ from the usual social dilemma games (Prisoners’

Dilemma, Public Goods, Common Pool resource games) by requiring asymmetric choice be-

havior when there is voluntary cooperation. In one-shot experiments with such games, this

excludes fair and efficient voluntary cooperation, not only game theoretically, as for all social

dilemma games, but also behaviorally (see Prasnikar and Roth, 1992) due to the non-convexity

of the set of feasible payoff vectors. This non-convexity is partly avoided (in treatments Base

and AllPay) by introducing a third stage allowing the lower contributor to compensate the

higher one. Played just once, this renders the MSBS scenario a trust game with the innova-

tive feature of two potential trustors who determine endogeneously who becomes the maximal

contributor and thus the trustor whom the other might reward by compensating.

In our paper, we did not run a one-shot control experiment of the MSBS scenario, hoping

that last round behavior in the supergames would shed at least some light on behavior when

voluntary cooperation can no longer rely on the shadow of the future to discourage exploitation

attempts. We have commented on this above when discussing endgame behavior. For the

repeated sequential best shot game, we could convincingly demonstrate that compensating
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is mostly used when available but is no “conditio since qua non” for voluntary cooperation.

Like lovers managing to come together whenever possible, eager cooperators will find a way to

cooperate fairly and efficiently when there is one.

Appendix: Instructions for treatment Base

Welcome and thank you for participating in this experiment. Please read these instructions

very carefully. From now on we ask you to remain seated and to stop communicating with

other participants. If you have any questions, please raise your hand. We will come to your

place and answer your questions in private.

These instructions are the same for all participants.

Your earnings in this experiment will be counted in points. For every 500 points you earn,

you will be paid 1 euro in cash directly at the end of the experiment. For showing up you

receive an initial endowment of 1,500 points credited to your points account.

You will participate in the following sub-experiment three times. Each sub-experiment

consists of 20 rounds. You interact in one sub-experiment repeatedly with the same other par-

ticipant but in different sub-experiments with different participants. You will not be informed

who these other participants are, nor will they learn your identity.

There are two different roles in this experiment. These roles are denoted with 1 and 2. Your

role will be assigned randomly at the beginning of the experiment. You then decide only in

the role assigned to you. Your role stays the same in all sub-experiments. In the following, the

participant who is assigned role 1 or 2, respectively, is called participant 1 or 2, respectively.

In all three sub-experiments, one round consists of three stages. At the beginning of each

round, both participants receive 100 points. In the first stage, participant 1 decides how many

out of the 100 points he wants to contribute to a joint project (contribution 1). Contributions

can only be made in steps of 10. In the second stage, participant 2 is informed about the

contribution of participant 1 and decides about his contribution to the project (contribution

2). Here again, contributions can only be made in steps of 10.
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The payout from the project is determined depending on the own contribution and that

of the other participant. Both participants receive the same payout. The size of the payout

depends on the higher of the two contributions, no matter if it was made by participant 1 or

2. The lower of the two contributions does not matter for the payout from the project. The

lower contribution is refunded immediately to the participant who made it. If both participants

choose the same contribution, a random draw decides who of the two participants (1 or 2) makes

his contribution, the other contribution is refunded.

Highest contribution 0 10 20 30 40 50 60 70 80 90 100

Payout for
0 27 40 47 55 61 67 73 80 83 85

both participants

At the end of the second stage, both participants are reminded of their own contribution

and informed about the contribution of the other participant. Furthermore, you are informed

about the payout from the project for both participants.

In the third stage, the participant who did not pay in anything can make a voluntary

transfer payment to the other participant (who made the higher contribution to the project).

This payment can amount to between 0 and 100 points.

At the end of each round you learn

• the contribution of participant 1 in the first stage

• the contribution of participant 2 in the second stage

• the amount of the transfer payment in the third stage

• your final profit in the current round

• your current total profit from this sub-experiment (For each sub-experiment the profit is

shown separately.)

Your profits from all three sub-experiments are added up at the end of the experiment and

paid out to you in cash. The exchange rate is 500 points to 1 euro.
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After reading the instructions, you will have the possibility to familiarize yourself with

the experiment in two practice rounds. In these practice rounds, you do not interact with

another participant but with a computer program. The practice rounds are not relevant for

your payoff. Afterwards you will be asked to answer some control questions. Only then will

the actual experiment start with the first sub-experiment. After the experiment, we will ask

you to answer a short questionnaire.
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