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Abstract

Three critical cases, involving asymmetric and symmetric cases, in
the sequential stages of the n-player repeated auctions are analyzed and
compared. These cases might arise in a process of sequential, identical
or equivalent auctions, where the auction result may reveal information
about the strength or competitiveness of the participants. The behaviours
of different players are characterized. Generally a player bids more aggres-
sively when facing a strong player rather than a weak player. However
a player favours competing with a weak one rather than a strong one.
By applying the concept of Conditional Stochastic Dominance, revenues
of players and the seller between the three stages are compared. It is
proved that in this sequential process the information structure of the
auctions changes and the seller’s revenue increases. Finally, this n-player
asymmetric auction model can also be used to compare the revenues be-
tween high-bid and open auctions and especially the results first derived
by Maskin and Riley (2000) in two-player case are proved to be valid in
the n-player case.

Keywords: Asymmetric auction; Revenue comparison

JEL Classification: C72; D44; D82

1 INTRODUCTION

In this paper we discuss the transformation of information structure during
sequential stages of repeated auctions. The private information of the winners
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in previous stages releases gradually, which changes the information structure
and the behaviours of players in later stages of auctions. By the analysis of the
three typical and critical cases during all stages of the repeated auctions, this
paper shows the changes of information structure and behaviours of different
players. Firstly we assume that each stage of the repeated auctions is a sealed-
bid first-price auction for a single and equivalent item, and assume that the
ability (or the bidding cost) of any participant remains the same throughout all
stages of the sequential auctions. In real world, this indicates that the process of
the repeated auctions is restricted in a limited period so that the ability (or cost
structure) of any player changes not much. Technically it permits the ability
parameter of any player to be a constant through the analysis of all the stages.

Now we introduce the three cases of the repeated auctions. The first stage
of the repeated auctions, as analyzed in Case 1, shows a symmetric case, where
no private information about the valuation of the item is known except that
any one’s valuation of the item can be seen as randomly derived from a com-
mon distribution. After the first round or when the same auction repeats for
some time, the information of the winner’s valuation of the item is released
and the situation described by Case 2 emerges. In this stage, valuation of the
winners in previous stages can be seen as drawn from a stochastically dominant
distribution, comparing to the common distribution. After some times of the
repeat, more information is released about the group of winners in the previous
auctions. In the final round, weak players, knowing the strong players’ private
informtion, withdraw automatically or are ruled out of the final list by the seller.
Then the Case 3 emerges. Specifically we analyze the 2-player case in Case 3.
In the following we describle the three cases in details.

Case 1: Symmetric n-player Case There are n players, participating in the
sealed-bid auction for a single item. Any of the n players, i = 1, 2, ..., n, has
private information on the valuation of the item, vi. From other players’
perspective, it is a random variable ṽi with c.d.f. F (·) on the support
[v
¯i, v̄i], 0 ≤ v

¯i < v̄i. In other words, all the n players are symmetric
since anyone ’s valuation of the item is distributed according to the same
function F (·) on the same support. Assume that F (·) is twice continuously
differentiable on (v

¯i, v̄i] and the density function F ′(·) is strictly positive
on [v

¯i, v̄i]. Therefore, it is easy to know that there exists a symmetric
equilibrium, characterized by player i’s bidding strategy bi(vi), which can
be easily derived explicitly.

We ssume that the sequential auctions are efficient, i.e. in any of the auctions
the seller selects the strongest player of all participants as the winner. The
process of the sequential auctions will reach the end of Case 1, if only the
winner’s information is revealed publicly, i.e. the distribution of her valuation
is known by all other players. Therefore, the auctions in Case 1 may repeat
for more than one round until the above critical information of the winner is
released. Additionally, we assume that in Case 1 the distribution function is
labelled as Fi(·), which indicates that in this case the seller see all players as
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’weak player’. We have F (·) = Fi(·). As a counterpart of the this situation, we
conceive a symmetric auction with all strong players, in which the distribution
function is labelled as F1(·). This situation with purely strong players is only
used for equilibrium and revenue comparison in later sections.

Case 2: Asymmetric n-player Case In this case there exist one strong player
and n − 1 normal players. Without loss of generality, the strong player
is labelled as Player 1, whose valuation stochastically dominates those of
other players. In other words, the strong player and other players are
distributed according to the c.d.f. F1(·) and Fi(·), respectively.

Comparing with the denotation in Case 1, we have F (·) = Fi(·), which
indicates that for n−1 normal players the distribution function does not change
while the information of the strong player’s distribution is revealed in this case
for all participants.

Case 3 emerges, when the information of the second strong player releases in
the previous auctions. The following Case 3 is a two-player final round, where
the final winner is selected. Generally there are several reasons, which may
expain why other players do not participate any longer. One possible reason is
that when knowing the information of the two strong players, other weak players
are deferred from participating the later round any longer because participating
in the following stages of auctions is much less or no more profitable for them.
However, this is not a sufficient condition for all other players to draw off. In
the real world the seller often specifies certian rules to select the final list of
players in order to maximize seller’s revenue. Theoretically, many literatures
on auction and contests indicate that for a large of contests and tournaments
the optimal number of contestants is two (see Fullerton and McAfee (1999)[2],
Gradstein and Konrad(1999)[3] ). Therefore, this paper specifies that in the
final Case 3, only two strong players are final-listed.

Case 3: Final Round — 2-player Case In this case there are only two
players active while other (n − 2) players have already drawn off or been
ruled out from the game. We label the two players as Player 1 and Player
2, whose valuations of the item are drawn from c.d.f. F1(·) and F2(·),
respectively. In this final round, there are two possible situations, i.e.
one symmetric situation and one asymmetric situation. In the asymmet-
ric situation, the valuation of Player 1 stochastically dominates that of
Player 2. In the symmetric situation, two strong players are in the fi-
nal round, whose valuations are both drawn from the same distribution
function F1(·).

Additionally, we conceive a symmetric situation involving two weak players,
which can be seen as a counterpart of the two-strong-player situation and exists
just for the convenience and completeness of analysis and comparison. This is
not a real situation in the sequential auctions because if all the players are all
weak ones, Case 2 and case 3 will not emerge.
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In the real world, online auctions attract much attention of researchers. The
results in this paper is helpful to explain phenomena in repeated online trans-
actions and especially the repeated procurement auctions. On the other hand,
from certain perspective some of the sequential stages in repeated auctions share
similar information structure with multiple rounds of contests or tournaments.
The change of information structure discussed here is useful to explain players’
behaviour in different stages of tournament. Generally this paper prove that
in a n-player case, a player will bid more aggressively when facing strong play-
ers rather than weak ones. For the designer or the seller, they obtain higher
revenue, when players with higher abilities compete with each other.

Theoretically, this paper pay much attention on the anylysis of the asym-
metric situations of auctions. Auction literature considering asymmetry is not
so rich compared to other auction fields (see review [4] at pp. 236–237). In
1980s, some important studies assuming asymmetry developed the approach of
marginal revenues and obtained important comparison results (see [9], [1] and
[5]). As written By Klemperer[4], the large variety of different possible kinds of
asymmetries makes it difficult to develop general results, but Maskin and Riley
[6] make large strides, in which the concept of Conditional stochastic Dominance
is applied in the analysis of asymmetric 2-player case, which solves the problem
of revenue comparison between high-bid and open auction effectively.

In this paper, a n-player asymmetric auction is established and analyzed.
Since the advantage of CSD is on revenue comparison, we apply the approach
by Maskin and Riley (2000)[6] and extend the 2-player results of Maskin and
Riley (2000) to n-player case.This paper gives the general results for n-player
asymmetric auctions and makes revenue comparisons from the perspectives of
both the players and the seller in the background of three cases. Finally, the
results of revenue comparison between high-bid auction and open auction are
generalized from 2-player case to the n-player case.

The rest of this paper is organized as follows. Section 2 analyzes the equilib-
rium bidding functions in the three cases and under the condition of CSD Sec-
tion 3 makes further analysis and comparison of the equilibrium distributions
and characterize the equilibrium inverse bid functions in various symmetric and
asymmetric cases. Section 4 gives the players’ equilibrium revenues and the
seller’s revenues in various symmetric and asymmetric cases. The seller’s rev-
enues in these cases are compared and ranked. In this section, the players’ and
seller’s bahaviours in the three cases analyzed in previous sections are explained
from the perspective of revenue comparison. Section 5 makes comparison be-
tween the revenue in open auction and that in first-price sealed-bid auction
in various asymmetric n-player situations of auctions. This part theoretically
complete the analysis of asymmetric auctions. Section 6 concludes.
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2 EQUILIBRIUM BIDDING

2.1 Asymmetry, imperfect, 1, N − 1

Without loss of generality, buyer 1 is assumed to be the buyer whose valuation
is publicly known to stochastically dominate that of the others by the concept
of Conditional Stochastic Dominance. Specifically suppose that for all x < y in
[v
¯1, v̄1].

Pr{ṽ1 < x|ṽ1 < y} =
F1(x)

F1(y)
<

Fi(x)

Fi(y)
= Pr{ṽi < x|ṽi < y}, (2.1)

from which it is easy to obtain,

Corollary 1 CSD implies

Fi(v) > F1(v), for all v ∈ (v
¯ i, v̄1). (2.2)

v
¯ i ≤ v

¯ 1 and v̄i ≤ v̄1 (2.3)

F1(x)

Fi(x)
<

F1(y)

Fi(y)
for all x < y in (v

¯ i, v̄1) (2.4)

Notice (2.2) means that buyer 1’s valuation first order stochastically domi-
nates that of any others. And (2.2) implies (2.3). (2.4) indicates the monotony
of increasing for F1(v)/Fi(v).

More specifically in this model, combined with the results from CSD we have

Corollary 2 1. If v
¯ i < v

¯ 1

(a) Fi(v) > 0 = F1(v) for all v ∈ (v
¯ i, v¯ 1)

(b) F1(v)
Fi(v) < F1(v̄1)

Fi(v̄1)
= 1 for all v ∈ [v

¯ 1, v̄1)

(c) d
dv

F1(v)
Fi(v) > 0 for all v ∈ [v

¯ 1, v̄1]

2. If v
¯ i = v

¯ 1 = v
¯

(a) F1 = Fi = 0

(b) ∃λ ∈ (0, 1) and γ ∈ [v
¯
, v̄i]

{

F1 = λFi, for all v ∈ [v
¯
, γ];

d
dv

F1(v)
Fi(v) > 0, for all v ∈ [γ, v̄1].

(2.5)

We assume that there exists an equilibrium in which buyer 1 uses the bidding
strategy b1(v) and others use a symmetric bidding strategy bi(v), i = 2, 3...n.

Then buyer 1’s and i’s expected revenue, when bidding, b is
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U1(b|v1) ≡ (v1 − b)Prob(b > bi(vi), i = 2, 3...n)
= (v1 − b)Fn−1

i (b−1
i (b))

Ui(b|vi) ≡ (vi − b)Prob(b > bj(vj), i 6= j)Prob(b > b1)
= (vi − b)Fn−2

i (b−1
i (b))F1(b

−1
1 (b))

(2.6)

Rather than solving directly for the equilibrium bid functions, it is convenient
to deal with inverse bid functions, which identify for some equilibrium bid the
bidders’ true valuation. Note that φi(b) = b−1

i (b), i = 1, 2, ...n. We then have

{

U1(b|v1) = (v1 − b)Fn−1
i (φi(b))

Ui(b|vi) = (vi − b)Fn−2
i (φi(b))F1(φ1(b))

(2.7)

Taking logarithms and differentiating by b, we obtain the first-order con-
dition FOC. Similar to the case of Maskin and Riley (2000 and 2003), under
certain conditions, that v

¯1 must not be much larger relative to v̄i, there are
unique minimum and maximum winning bids b∗ and b∗ for which there exists a
solution to the following pair of differential equations.

{

(n − 1)
F ′

i
(φi)

Fi(φi)
φ′

i = 1
φ1−b

(n − 2)
F ′

i
(φi)

Fi(φi)
φ′

i +
F ′

1
(φ1)

F1(φ1)
φ′

1 = 1
φi−b

(2.8)

(All functions φi and φ′

i are evaluated at b for all b ∈ [b∗, b
∗].)Satisfying the

boundary conditions

Fi(φi(b
∗)) = 1, i = 1, 2..., n.

v
¯1 = v

¯i ⇒ b∗ = φi(v
¯1) = φ1(v

¯1) = v
¯1 (2.9)

v
¯1 > v

¯i ⇒ b∗ = max arg max
b

{(v
¯1 − b)Fi(b)}, φi(b∗) = b∗.

Moreover, this solution constitutes the unique equilibrium of inverse bid
functions, i.e.

φi(b) = b−1
i (b) (2.10)

where bi(·) is buyer i’ equilibrium bid as a function of his valuation.

2.2 Symmetry, imperfect, N

Now we go back to consider the initial situation of the repeated auction, when
all buyers’ values are assumed to be symmetrically distributed. The random
variable ṽ possibly has a higher or lower c.d.f, i.e. F1(·) or Fi(·), which indicates
that there are possibly two participation pools. Actually, before a buyer enter
any of the two pools, he knows which one he chooses to enter. Let yi(b) be the
symmetric equilibrium inverse bid function. Similar to (2.8), we have

(n − 1)
F ′

i (yi)

Fi(yi)
y′

i =
1

yi − b
, (2.11)

with boundary condition yi(v
¯i) = v

¯i.
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The subscript i = 1 implies that it is a pool of higher ability and i > 1
implies a pool of lower ability.

Rearranging (2.11), we obtain

(n − 1)bF ′

i (yi)
dyi

db
+ Fi(yi) = (n − 1)yiF

′

i (yi)
dyi

db

Multiply both sides of the equation by Fn−2
i (yi), it is easy to obtain

yidFn−1
i (yi) = bdFn−1

i (yi) + Fn−1
i (yi)db

Let b̄i(v) be the corresponding equilibrium bid function, i.e. the inverse of
yi(b). Integrating the last equation, we get

b̄i(v)Fn−1
i (v) =

∫ v

v
¯i

yidFn−1
i (yi) (2.12)

It follows immediately that in symmetric equilibrium a buyer’s maximum
possible bid is equal to the mean valuation

b̄i(v̄i) =

∫ v̄i

v
¯i

yidFn−1
i (yi) = E{ṽi} ≡ µi

From (2.2), we then have

µ1 > µi i = 2, 3, ..., n. (2.13)

We rewrite (2.12) in a usually used form in literature

b̄i(v) = v −

∫ v

v
¯i

Fn−1
i (x)dx

Fn−1
i (v)

i = 1, 2, ..., n. (2.14)

From CSD, we know

b̄i(v) ≤ b̄1(v), for all v ∈ (v
¯1, v̄i), i = 2, 3, ..., n. (2.15)

2.3 Asymmetry, perfect, 2, N − 2

Finally, there are only two active buyers left in this auction, because other
buyers all leave the auction when information of the two strongest buyers is
released from former auction, which indicates that other weaker buyers never
profit by participation. Therefore, the repeated auction shrinks to a two-player
asymmetric case.

Actually, the final situation may be either an imperfect Information case or
a perfect Information case. Such cases are analyzed respectively here.
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2.3.1 Imperfect Information case

As assumed in the Introduction, we still assume that this specific information
is in the sense of first-order stochastic dominance and, more specifically, the
valuations of the two strong buyers first-order stochastically dominate that of the
other buyers and the valuations of the strongest buyer first-order stochastically
dominates that of the second strongest one.

{

U1(b|v1) = (v1 − b)F2(φ2(b))
U2(b|v2) = (v2 − b)F1(φ1(b))

(2.16)

3 ANALYSIS

Define
pi(b) ≡ Fi(φi(b)), i = 1, 2, ..., n.

Hi(·) ≡ F−1
i (·), i = 1, 2, ..., n.

Therefore, φi(b) = Hi(pi(b)). We have stochastic dominance, H1(p) > Hi(p) for
all p ∈ (0, 1). Then we can rewrite (2.8) as

{

(n − 2)
p′

i

pi

+
p′

1

p1

= 1
Hi(pi)−b

(n − 1)
p′

i

pi

= 1
H1(p1)−b

(3.1)

Similarly, for the symmetric equilibrium, we define

πi(b) ≡ Fi(yi(b)), i can be 1 or larger than 1.

Then, we have

(n − 1)
π′

i

πi

=
1

Hi(πi) − b
(3.2)

The following results, i.e. Lemma 1, Proposition 1, Corollary 3 and Propo-
sition 2 are the n-player version of the 2-player results in Maskin and Riley
(2000)[6], (specifically the extension of Lemma 3.2, Proposition 3.3, Corollary
3.4 and Proposition 3.5, respectively.) See proofs of the results in appendix,
which follow similar approach of Maskin and Riley (2000). Therefore, these
results apply to both 2-player case and n-player case well. In other words, the
following two Propositions in this section apply both to Case 2 and to Case 3
and explain the behaviours in various situations.

Lemma 1 If
Fi(v) > f1(v), for all v ∈ (v

¯ i, v̄1).
v
¯ i = v

¯ 1 = v
¯

and F1 = Fi = 0
d
dv

F1(v)
Fi(v)

∣

∣

∣

v=v
¯

> 0

then there exists δ > v
¯

such that for all b ∈ [v
¯
, δ]
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1. πi(b) > π1(b);

2. pi(b) > p1(b);

3. πi(b) > pi(b);

4. p1(b) > π1(b).

in which i = 2, 3, ..., n.

Proposition 1 Comparison of equilibrium bid distributions. Given CSD, then

1. πi(b) > π1(b), For all b ∈ (v
¯ 1, µ1);

2. pi(b) > p1(b), For all b ∈ (b∗, b
∗) ;

3. πi(b) > p1(b), For all b ∈ (b∗, b
∗) ;

4. pi(b) > π1(b), For all b ∈ (b∗, b
∗) .

in which i = 2, 3, ..., n.

Proposition 1 explains the behaviours of different players facing different
situations in the n-player case, i.e. Case 3. The first result of Proposition 1
is obvious. Comparing two symmetric auctions invloving purely strong players
and weak players, respectively, the equilibrium bid distribution of the strong
player stochastically donimates that of the weak player. The second result
of Proposition 1 compares the behaviours of different players in asymmetric
case and indicates that the equilibrium bid distribution of the strong player
stochastically donimates that of the weak player.

The third result of Proposition 1 compares a asymmetric situation with a
symmetric situation involving only weak players and characterizes the behaviour
of weak players, i.e. if a weak player faces a strong buyer rather than another
weak player, she responds with a more aggressive bid distribution in the sense
of stochastic dominance.

The fourth result of Proposition 1 compares an asymmetric situation with a
symmetric situation involving only weak players and characterizes the behaviour
of the strong player, i.e. if a strong buyer faces a weak player rather than another
strong player, she will respond with a less aggressive bid distribution.

Since this proposition can applies to Case 3, it is easy to conclude that for the
designer of the auction it is more profitable that the final round of the sequential
auctions will turn out to be two strong players, because this result implies that
the two strong players will bid more aggressively than other situations.

Corollary 3 Given CSD, the following inequality holds

µi ≤ b∗ ≤ µ1,

with at least one strict inequality and i = 2, 3, ..., n.
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Proof. Suppose b∗ < µi. From (2.10), 1 = p1(b
∗) = πi(µi) > πi(b

∗) and so
p1(b) > πi(b) for b near b∗, a contradiction of Proposition 1 part 3. A similar
contradiction follows from b∗ ≥ µ1. ‖

Proposition 2 Characterization of equilibrium inverse bid functions. Given
CSD,

1. yi(b) ≥ y1(b), For all b ∈ (v
¯ 1, µ1);

2. φ1(b) > φi(b), For all b ∈ (b∗, b
∗) ;

3. yi(b) > φi(b), For all b ∈ (b∗, b
∗) ;

4. φ1(b) > y1(b), For all b ∈ (v
¯ 1, b

∗) .

in which i = 2, 3, ..., n.

By the comparison of equilibrium inverse bid functions, this Proposition
characterizes the bidding behaviours of different players in various situations
of the n-player case, i.e. Case 2. The first result of Proposition 2 compares
two symmetric auctions invloving purely strong players and weak players, re-
spectively, and indicates that the weak player shades her bid further below her
valuation than the strong player.

The second result of Proposition 2 characterizes the behaviours of differ-
ent players in asymmetric equilibrium, i.e. in the asymmetric equilibrium, the
strong player shades her bid further below her valuation than the weak player.
The third result of Proposition 2 compares a asymmetric situation with a sym-
metric situation involving only weak players and characterizes the behaviour
of weak players, i.e. if a weak player faces a strong player rather than a weak
player he will bid more aggressively (closer to her valuation). The fourth result
of Proposition 2 indicates that if a strong player faces a weak player rather than
a strong player she will bid less aggressively. As a conclusion of the above two
Propositions, in general a player bids more aggressively, when she faces strong
players rather than weak players.

From Proposition 1 and Part 3, Part 4 of Proposition 2, we obtain the
following Corollary.

Corollary 4 For b ∈ (v
¯ 1, b

∗), we have

πi(b) > pi(b) > p1(b) > π1(b).

in which i = 2, 3, ..., n.

This Corollary can be seen as a conclusion of the above two Propositions
and gives the basic principle of different players’ behaviours in Case 2 and Case
3 in the sense of stochastic dominance.
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4 REVENUE COMPARISON

4.1 Players’ Equilibrium Revenue

For any player i, i = 1, 2, ..., n, denote UAs
i (v, F1, Fi) as buyer i’s expected equi-

librium revenue from an auction with asymmetric players when his reservation
price is v. The strong player’s reservation price is distributed according to F1

and other symmetric buyers’ reservation prices are distributed according to Fi),
i = 2, ..., n.

(1) Player’s revenue in asymmetric n-player case
Note i = 2, 3, ..., n, and we have,

RAs
1 (v, F1, Fi) = max

b
pn−1

i (b)(v − b);

and

RAs
i (v, F1, Fi) = max

b
pn−2

i (b)p1(b)(v − b).

(2) Player’s revenue in symmetric n-player case
When all buyers are strong, we have

RS
1 (v, F1, F1) = max

b
πn−1

1 (b)(v − b) = πn−1
1 (b̄1)(v − b̄1).

In a symmetric auction with all weak players, we have

RS
i (v, Fi, Fi) = max

b
πn−1

i (b)(v − b) = πn−1
i (b̄i)(v − b̄i).

where i = 2, 3, ..., n.
From Corollary 4, it is easy to obtain (see proof in Appendix)

Proposition 3 We rank the expected players’ revenues of the above asymmetric
and symmetric auctions as

RAs
1 (v, F1, Fi) > RS

1 (v, F1, F1);

and
RAs

i (v, F1, Fi) < RS
i (v, Fi, Fi).

This proposition implies that for a strong player it is more profitable to com-
pete with weak players in an asymmetric auction than to compete with strong
players in a symmetric auction. And it is the same for a weak player to pre-
fer competing with less strong opponents. Since Proposition 1 and Proposition
2 indicate that a player bids more aggressively when she faces strong players
rather than weak ones, it is easy to know that it is more profitable to compete
with weak players than with strong ones.
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4.2 Expected seller revenue

(1) Expected seller revenue in asymmetric n-player case
Any of the strong players’ expected payment, if he bids b ≥ b∗, is bFn−1

i (φi(b)).
Since her equilibrium bid distribution has c.d.f.F1(φ1(b)), the expectation over
all bids is

RAs
1 =

∫ b∗

b∗

bFn−1
i (φi(b))dF1(φ1(b))

in which RAs
1 note the expected seller revenue from the strong player in the

asymmetric model and i = 2, 3..., n.
Any of the weak players’ expected payment, if she bids b ≥ b∗, is bFn−2

i (φi(b))F1(φ1(b
Since her equilibrium bid distribution has c.d.f.Fi(φi(b)), the expectation over
all bids is

RAs
i =

∫ b∗

b∗

bFn−2
i (φi(b))F1(φ1(b))dFi(φi(b))

Therefore, the total expected revenue that the seller obtain from this auction
is

RAs = RAs
1 +(n−1)RAs

i =

∫ b∗

b∗

bFn−1
i (φi(b))dF1(φ1(b))+

∫ b∗

b∗

bF1(φ1(b))dFn−1
i (φi(b))

Integrating by parts to the last part and rearranging, we have

RAs = bF1(φ1(b))F
n−1
i (φi(b))

∣

∣

b∗

b∗
−

∫ b∗

b∗

F1(φ1(b))F
n−1
i (φi(b))db;

(2) Expected seller revenue in symmetric n-player case
When all players are strong, the total expected seller revenue is

RS1 = n

∫ µ1

v
¯1

bFn−1
1 (y1(b))dF1(y1(b)) =

∫ µ1

v
¯1

bdFn
1 (y1(b));

Rearranging, we have

RS1 = bFn
1 (y1(b))|

µ1

v
¯1

−

∫ µ1

v
¯1

Fn
1 (y1(b))db;

And when all players are weak, the total expected seller revenue is

RSi = n

∫ µi

v
¯i

bFn−1
i (yi(b))dFi(yi(b)) =

∫ µi

v
¯i

bdFn
i (yi(b));

Rearranging, we have

RSi = bFn
i (yi(b))|

µi

v
¯i

−

∫ µi

v
¯i

Fn
i (yi(b))db;
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(3) Expected seller revenue in asymmetric imperfect 2-player case

RAs2
1 =

∫ b∗

b∗

bF2(φ2(b))dF1(φ1(b))

RAs2
2 =

∫ b∗

b∗

bF1(φ1(b))dF2(φ2(b))

Therefore, the total expected revenue that the seller obtain from this auction
is

RAs2 = RAs2
1 + RAs2

2 = bF1(φ1(b))F2(φ2(b))|
b∗

b∗
−

∫ b∗

b∗

bF1(φ1(b))F2(φ2(b))db

In the context described in the introduction, player 2’s information is newly
emerged and following the reasoning of Corollary 4, we denote p2(b) = F2(φ2(b))
and assume that pi(b) > p2(b) > p1(b). Concluding all the results above, we
then have the following Proposition in the next subsection.

(4) Comparison and Explanations of different situations
From the results from the above subsection (1), (2), (3) and (4), we have

the following proposition.

Proposition 4 If the difference between players’ valuations is small, i.e. the
following differences

1. the difference between integral upper bounds b∗, µ1 and µi

2. the difference between integral lower bounds b∗, v
¯ 1 and v

¯ i

are not big enough to change the signs of the following inequalities, then we have

RS1 > RAs2 > RAs > RSi

where i = 2, 3, ..., n.

We can rewrite the above result as

RS1 > RCase3 > RCase2 > RCase1

Specifically, from the conceived case, where there are n strong players, the
seller obtains the highest revenue. However, it is not a real case. It is obvious
that following the sequential stages of the repeated auctions, i.e. from Case 1,
Case 2 to Case 3, the seller increases her revenue. Intuitively the seller hopes the
participants to be stronger, and meanwhile hopes that the strong participants to
be more. In the following we discuss the influence of the information structure
to the seller’s revenue in this sequential process. The following analysis is from
the perspective of the seller, though the seller does not have special information
more than a normal player, i.e. the seller has the information as much as it is
released from the process of the repeated auctions.

13



In Case 1, all the players are symmetric and the seller does not know private
information of the participants. Proposition 4 tells that the seller’s revenue
in Case 1 is the lowest among all the cases. When some private information,
i.e. the type and distribution of the winner, releases, the symmetric situation
of auction in Case 1 will change to be a asymmetric case as in Case 2. The pri-
vate information which can ascertain the winner’s distribution can increase the
seller’s revenue. That explains why sellers or auctioneers always have incentive
to know more information about critical participants.

The seller or the public assumes that Case 1 is a symmetric case and all
players’ valuations are assumed to be distributed according to the function Fi(·).
Since the distribution function Fi(·) describes the weak players’ valuations and
their behaviours, the seller in Case 1 holds a pessimistic assumption that all
the unkown players are supposed to be weak players. This perspective implie
that the seller is risk averse, because she does not take account of the risk what
kind of bid distribution the winner will hold, and how high the winner will bid.

The Case 2 emerges when the winer’s distribution information is released
from previous auctions. At this time the seller revised his knowledge of the
participants. In this asymmetric auction, for the seller, there is a upper bound
of distribution F1(·) and a lower bound of distribution Fi(·). The seller can
apply any distribution function between the two distributions to describe any
of the unkown players. However, the seller applies her pessimistic perspective for
all unkown players again, i.e. except the winner others’ valuation are assumed
to be distributed with Fi(·). From Proposition 4, it is easy to know that the
seller’s revenue falls in the interval [RS

i , RS
1 ]. As a partly conclusion, under the

assumption that the seller has no special information available in Case 1 and
believes that all players are weak ones, from Proposition 4, the revenue of Case
2 increases, comparing with that of Case 1.

The repeated auctions move on to Case 3, when the information of the second
winner is publicly released. At this case, the revenue of the seller reaches to the
peak of all the cases in the repeated auctions, though the seller obtains an ideally
high revenue in a conceived case, where purely strong players participate. In
between, we emphasize that how much the second winner values the item is
more important than the first winner does, because this specific value benefits
the seller more, so that the seller waits until its emergence for the longest time,
i,e, duration of all the sequential process.

As a conclusion, when the seller have no special information in the original
Case 1, following the process of the repeated auction, the revenue of seller always
increases. Therefore, the seller has an incentive to wait until the releasing of
the information of the second winner. Otherwise, if the seller obtians important
information in the middle of the process, i.e. when she expects that no stronger
player emerges any longer, she will try to interrupt the process of the repeated
auctions and does not wait any longer. For instance, at Case 2, if the seller
knows that there exists no second strongest buyer but weak ones, he will stop
holding another auction in the same pool because beginning another first-stage
auction in another pool is more beneficial than holding one in the same pool
hopelessly. Similarly, at the second stage, if the seller knows that there exists no
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second strongest player but weak ones, he will just quit after the strongest one
emerges. Therefore, knowing more information of the players’ is much critical
for the seller.

5 RANKING OF OPEN AUCTION AND FIRST-

PRIZE SEALED-BID AUCTION

In this section, we follow the Section 4 in Maskin and Riley (2000)[6] and
extend the 2-player results into n-player case. This additional work is just to
theretically complete the revenue comparison for n-player asymmetric auctions.

Let UH
i (v, Fa, Fb) be the buyer’s expected equilibrium surplus from the first-

prize sealed-bid auction (here noted as high-bid auction), when i = 1, 2, ..., n,
buyer’s reserve price is v, and the reservation prices of the strongest and other
buyers’ are distributed according to Fa and Fb,respectively. And let UH

i (v, Fa, Fb)
be the buyer’s expected equilibrium surplus from the open auction.

UH
1 (v, F1, Fi) ≡ max

b
pn−1

i (b)(v − b) = pn−1
i (b1(v))(v − b1(v));

UH
i (v, F1, Fi) ≡ max

b
pn−2

i (b)p1(b)(v − b) = pn−2
i (bi)p1(bi)(v − bi);

where b1(·) and bi(·) are the stronger’s and others’ equilibrium bid functions
in the high-bid auction when the distributions are (F1, Fi), respectively.

Lemma 2 In the sealed high bid auction, the expected seller revenue from bidder
i, i = 2, 3, ..., n is

RAs
1 = b∗[1 − F1(v

¯ 1)]F
n−1
i (b∗) +

∫ v̄i

b∗

[1 − F1(Q(v))]Q(v)
d

dv
[Fn−1

i (v)]dv;

and

RAs
i = −

∫ v̄i

b∗

Fn−2
i (v)

d

dv
[v(1−Fi(v))]dv+

∫ v̄i

b∗

[1−F1(Q(v))]Fn−2
i (v)

d

dv
[v(1−Fi(v))]dv

Lemma 3 In the open auction, the expected seller revenue from bidder i, i =
2, 3, ..., n is

RO
1 = v

¯ i[1 − F1(v
¯ i)]F

n−1
i (v

¯ i) +

∫ v1

v
¯ i

[1 − F1(b)]bd[Fn−1
i (b)]}

and

RO
i = −

∫ v̄i

v
¯ 1

Fn−2
i (v)d[v(1 − Fi(v))] +

∫ v̄i

v
¯ 1

(1 − F1(v))Fn−2
i (v)d[v(1 − Fi(v))]
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Now we compare the revenues. When v
¯1 = v

¯i = v
¯
, the minimum bid, i.e.

b∗, is equal to v
¯
. From the above Lemmas, the difference in expected revenue

from the two auctions is

D ≡ RAs
i + (n − 1)RAs

i − RO
1 − (n − 1)RO

i

=
∫ v̄i

b∗
(n − 1)[1 − F1(Q(v))]Fn−2

i (v)[(1 − Fi(v)) + (Q(v) − v)F ′

i (v)]dv

−
∫ v̄i

b∗
(n − 1)[1 − F1(v)]Fn−2

i (v)(1 − Fi(v))dv

Rearranging the above expression, we obtain

D =
∫ v̄i

b∗
Fn−2

i (n − 1){[1 − F1(Q(v))](Q(v) − v)F ′

i (v) − (1 − Fi(v))[F1(Q(v)) − F1(v)]}

(5.1)
Since the above expression is similar to that obtained by Maskin and Riley

(2000)[6] in two-player case, following the same rationale, we obtain similar
conclusions on the comparison between high-bid and open auctions.

Proposition 5 High-bid auction superior for distribution shifts. Assume that
(1)Distribution shifts: given a < v̄i − v

¯ i, for all v ∈ [v
¯ i, v̄i + a],

F1 =

{

0, v < v
¯ i + a;

Fi(v − a), v ≥ v
¯ i + a.

(5.2)

(2) CSD: d
dv

F ′

i
(v)

Fi(v) < 0 on [v
¯ i, v̄i].

(3) Convexity: F ′′

i (v) ≥ 0 on [v
¯ i, v̄i].

additionally,
(4) −vF ′

i (v) + 1 − Fi(v) ≥ 0 for all v ∈ [v
¯ i, v¯ i + a]

Then the high-bid auction generates higher expected revenue than does the
open auction.

Proposition 6 High-bid auction superior for distribution stretches.
(1)Distribution stretches: For λ ∈ (0, 1), let the strong buyer have distribu-

tion F1(v), where v ∈ [v
¯ i, v̄1](v̄i < v̄1), such that

F1(v) =

{

λFi(v), v ∈ [v
¯ i, v̄i];

G(v), v ∈ [v
¯ i, v̄1].

where G(v
¯ i) = λ, G(v

¯ 1) = 1, and for all v ∈ [v
¯ i, v̄i] and w ∈ [v

¯ i, v̄1],

F ′

i (v) ≥ G′(w) > 0

(2)Fi(v
¯ i) = 0,

(3) d
dv

F ′

i
(v)

Fi(v) < 0 on [v
¯ i, v̄i].

Then the high-bid auction generates more expected revenue than the open
auction.
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Proposition 7 Open auction superior for shifts of probability mass to the lower
end point. Suppose the strong buyer’s valuation ṽ1 is distributed on according

to F1(v), v ∈ [v
¯
, v̄1] where F1(v

¯
) = 0, and

F ′

1
(v)

1−F1(v) is increasing. Buyer i’s

valuation ṽi is distributed so that, for all v ∈ [v
¯
, v̄1]. its density at v is a fraction

θ(v) ∈ (0, 1) with θ′(v) ≥ 0 of F ′

1(v) where the remaining density is reassigned
to v

¯
. That is,

Fi(v) =

∫ v

v
¯

θ(v)dF1(t) + γ,

where

γ =

∫ v̄1

v
¯

(1 − θ(v))dF1(t).

Then, the open auction generates higher revenue than the high-bid auction.

6 CONCLUSION

Different reasons can incur asymmetric behavior of players in competitive ac-
tivities. Most literatures focus on two main reasons: (1) players differ in risk
attitudes, or (2) players differ in their valuations respectively cost, or (3) valu-
ations are chosen from different distributions, due to asymmetry between par-
ticipants. There are however more aspects of asymmetry, for instance players
might differ in entry costs, in availabilities of information or options or budgets
they face. In this paper we only consider aspects (2) and (3) and still are far
from completing all the relevant varieties. One of the gaps between theoretical
results and its practical applications is superficially symmetry and asymmetry,
especially in auction theory and its applications. By establishing a repeated
contest, this paper tries to explain the evolutionary process from symmetry to
asymmetry and compare the different stages of them. We see symmetry as a
situation, where the seller lacks in information. When the process goes on and
more information about players, especially the winners, is released, the strong
player can be identified and, therefore, the auctions later on turn out to be
asymmetric. In this sense auction, as an economic institute, functions as a
cognitive or learning mechanism for seller to obtain information relative to his
interests. One of the important results obtained in this paper shows the validity
that further information about players, especially those with higher valuation,
are worth holding an auction to obtain optimal revenues for the seller.
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Appendix
Suppose that v

¯i = v
¯i = v

¯
, Define

ei(v) ≡
(v − v

¯
)F ′

i (v)

Fi(v)

i = 1, 2, ..., n
Then from (2.8) we have

{

(n − 1)ei(φi(b))φ
′

i(b) =
φi(b)−v

¯φ1(b)−b
;

(n − 2)ei(φi(b))φ
′

i(b)
φi−b
φi−v

¯
+ e1(φ1(b))φ

′

1(b)
φi−b
φ1−v

¯
= 1.

(A.1)

in which i = 2, 3, ..., n.
From the definition of ei(v), by l’Hôpital’s Rule we infer some properties of

it.

Fi(v
¯
) = 0 ⇒

{

ei(v
¯
) = 1,

e′i(v¯
) =

F ′′

i
(v
¯
)

2F ′

i
(v
¯
)

(A.2)

Now we infer some properties of the fraction F1(v)/Fi(v). By differentiating,
we obtain

d

dv

F1(v)

Fi(v)
=

F ′

1Fi − F1F
′

i

F 2
i

, for F1 > 0 and Fi > 0.
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Applying l’Hôpital’s Rule, we obtain

F1(v
¯
) = Fi(v

¯
) = 0 ⇒

d

dv

F1(v)

Fi(v)

∣

∣

∣

∣

v=v
¯

=
1

2

F ′

1(v)

F ′

i (v)
[
F ′′

1 (v)

F ′

1(v)
−

F ′′

i (v)

F ′

i (v)
] (A.3)

If
d

dv

F1(v)

Fi(v)

∣

∣

∣

∣

v=v
¯

> 0,

we have
F ′′

1 (v
¯
)

F ′

1(v¯
)

>
F ′′

i (v
¯
)

F ′

i (v¯
)

(A.4)

i.e. the bracketed expression in (A.3) is strictly positive.
Proof of Lemma 1
Since F1(v

¯
) = Fi(v

¯
) = 0, pi(v

¯
) = πi(v

¯
) = 0, i = 1, 2, ..., n, applying

l’Hôpital’s Rule to (A.1), we obtain

{

(n − 1)ei(v
¯
)φ′

i(v¯
) =

φ′

i
(v
¯
)

φ′

1
(v
¯
)−1 ,

(n − 2)ei(v
¯
)φ′

i(v¯
)

φ′

i
(v
¯
)−1

φ′

i
(v
¯
) + e1(v

¯
)φ′

1(v¯
)

φ′

i
(v
¯
)−1

φ′

1
(v
¯
) = 1

(A.5)

in which i = 2, 3, ..., n.
It follows from (A.2) that φ′

1(v¯
) = n

n−1 , n = 1, 2, ..., n. and in symmetric
equilibrium y′

1(v¯
) = n

n−1 , i = 1, 2, ..., n.

φ′

1(v¯
) = y′

1(v¯
) =

n

n − 1
, i = 1, 2, ..., n. (A.6)

Taking the logarithm of the first equation of (A.1), differentiating, and using
the result(obtained by applying l’Hôpital’s Rule)

lim
v→v

¯

1
(n−1)ei(φi)

− φ′

1 + 1

φ1 − b
= −

n

n − 1

F ′′

i (v
¯
)

2F ′

i (v¯
)
− (n − 1)φ′′

1 ,

we obtain the second equation in (A.7).
Meanwhile, differentiating the second equation of (A.1), taking use of the

results (obtained by l’Hôpital’s Rule)

lim
v→v

¯

(φ′

i − 1)(φi − v
¯
) − (φi − b)φ′

i

(φi − v
¯
)2

=
φ′′

i (v
¯
)

2[φ′

i(v¯
)]2

and

lim
v→v

¯

(φ′

i − 1)(φ1 − v
¯
) − (φi − b)φ′

1

(φ1 − v
¯
)2

=
φ′′

i (v
¯
)φ′

1(v¯
) − φ′′

1(v
¯
)(φ′

1(v¯
) − 1)

2[φ′

1(v¯
)]2

we obtain the first equation in (A.7).

{

n(n−2)
2(n−1)2

F ′′

i

F ′

i

+ n
2(n−1)2

F ′′

1

F ′

1

+ n2
−2

2n
φ′′

i + 1
2n

φ′′

1 = 0,

n
n−1

F ′′

i

F ′

i

+ n−1
n

φ′′

i + (n − 1)φ′′

1 = 0.
(A.7)
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in which i = 2, 3, ..., n.
Solving these equations yields







φ′′

1 = − n2

(n−1)(n2
−1)(n2

−n−1) [n(n − 1)
F ′′

i

F ′

i

−
F ′′

1

F ′

1

]

φ′′

i = − n2

(n2
−1)(n2

−n−1) [
(n2

−2n−1)
(n−1)

F ′′

i

F ′

i

+ n
n−1

F ′′

1

F ′

1

]

in which i = 2, 3, ..., n. And in symmetric equilibrium,

y′′

i = −
n2

(n2 − 1)(n − 1)

F ′′

i

F ′

i

in which i = 1, 2, ..., n.
For the convenience of comparison of φ′′

i and y′′

i , we rearrange them as







φ′′

i = − n2

(n2
−1)(n−1) [

(n2
−2n−1)

(n2
−n−1)

F ′′

i

F ′

i

+ n
(n2

−n−1)
F ′′

1

F ′

1

],

y′′

i = − n2

(n2
−1)(n−1) [

(n2
−2n−1)

(n2
−n−1)

F ′′

i

F ′

i

+ n
(n2

−n−1)
F ′′

i

F ′

i

].
(A.8)

in which i = 2, 3, ..., n.
From the hypotheses of this Lemma and (A.4), we then have

φ′′

i (v
¯
) < y′′

i (v
¯
). (A.9)

in which i = 2, 3, ..., n.
Similarly, for the convenience of comparison of φ′′

1 and y′′

i , we rearrange them
as

{

φ′′

1 = − n2

(n2
−1)(n−1) [

n(n−1)
(n2

−n−1)
F ′′

i

F ′

i

− 1
(n2

−n−1)
F ′′

1

F ′

1

]

y′′

i = − n2

(n2
−1)(n−1) [

n(n−1)
(n2

−n−1)
F ′′

i

F ′

i

− 1
(n2

−n−1)
F ′′

i

F ′

i

]

in which i = 1. Then we obtain

φ′′

1(v
¯
) > y′′

i (v
¯
). (A.10)

in which i = 1.
By definition of pi(b) and πi(b),

p′i(b) = F ′

i (φi(b))φ
′

i(b) and π′

i(b) = F ′

i (yi(b))y
′

i(b).

With (A.6), we have p′i(v¯
) = π′

i(v¯
).

Further we have

{

p′′i (b) = F ′′

i (φi(b))(φ
′

i(b))
2 + F ′

i (φi(b))φ
′′

i (b)
π′′

i (b) = F ′′

i (yi(b)) (y′

i(b))
2 + F ′

i (yi(b)) y′′

i (b)

with (A.6) and (A.9),(A.10) , part 3 and part 4 of Lemma 1 holds.
From Corollary 2, we know that Fi(v) > F1(v) for all v ∈ (v

¯i, v¯1). Since
v
¯i = v

¯1 = v
¯

and F1 = Fi = 0, we have F ′

i (v¯
) ≥ F ′

1(v¯
).

1. if F ′

i (v¯
) > F ′

1(v¯
), part 1 and part 2 of Lemma 1 holds;
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2. if F ′

i (v¯
) = F ′

1(v¯
), from (A.4) we have F ′′

1 > F ′′

i , which contradicts (2.2). ‖

Proof of Proposition 1
To establish part 1, firstly from (2.13), 1 = πi(b) > π1(b) for all b ∈

[µi, µ1). Contrary to Part 1, we assume that there is some b̂ ∈ [v
¯1, µi] such

that πi(b)/π1(b) = 1. We will show that πi(b)/π1(b) is increasing at b̂. Since
H1(p) > Hi(p) for all p ∈ (0, 1), π1 ≥ πi implies that H1(π1) ≥ H1(πi) > Hi(πi).
Then from (3.2) we have

(n − 1)
π′

i

πi

=
1

Hi(πi) − b
>

1

H1(π1) − b
= (n − 1)

π′

1

π1
at b = b̂.

Hence
d

db

πi

π1
= [

π′

i

πi

−
π′

1

π1
]
πi

π1
> 0, at b = b̂.

It follows that, for some δ > 0,

π1(b) > πi(b), for all b ∈ (b̂ − δ, b̂). (A.11)

Let δ be the biggest value for which (A.11) holds. If b̂ − δ > v
¯1, then

π1(b̂ − δ) = πi(b̂ − δ) (A.12)

and from the above argument, we have πi(b) > π1(b), for b near b̂ − δ,

such that b > b̂ − δ, which is a contradiction of (A.11). Then we assume that

b̂−δ = v
¯1. In the symmetric auction of n strong buyers, any buyer bids above v̄1,

if and only if they have valuations exceeding v̄1. Therefore, pii(v̄1) ≥ Fi(v̄1) ≥
F1(v̄1) = pii(v̄1) and so from(A.11), (A.12) holds.We conclude Fi(v̄1) = F1(v̄1)
and so v̄1 = v̄i = v̄. Thus from part 2 of Corollary2, we have Fi(v̄) = F1(v̄) = 0,
and if γ > v̄, then

F1(v) = λFi(v), for all v ∈ [v
¯
, γ].

Since from (2.11) yi(b) = y1(b) for b in some neighborhood of v̄, πi(b) >
π1(b) in that neighborhood, which is a contradiction of (A.11). Hence γ = v̄.
From part 1 of Lemma 1, πi(b) > π1(b) for all b in a neighborhood of v̄, a

contradiction of (A.11). We conclude that b̂ ∈ [v
¯1, µi] does not exist, and so

part 1 is established.
To establish part 2, suppose that there exists b̂ ∈ (b∗, b

∗) such that p1(b̂)/pi(b̂) =
1. Since H1(p) > Hi(p) for all p ∈ (0, 1), it follows from (3.1) that

(n − 2)
p′i
pi

+
p′1
p1

=
1

Hi(pi) − b
>

1

H1(p1) − b
= (n − 1)

p′i
pi

at b = b̂.

Then we have
p′

1

p1

>
p′

i

pi

at b = b̂, or p1/pi is increasing at b̂. Since the

same argument applies to any b0 > b̂ for which p1(b
0)/pi(b

0) = 1, we have

p1(b) > pi(b) for all b ∈ (b̂, b∗). But from (2.9), p1(b
∗) = pi(b

∗), and so b̂ can not
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exist. Hence part2 holds unless p1(b) > pi(b) for all b ∈ (b∗, b
∗), which would

conflict with part 2 of Lemma 1.
To prove part 3, suppose that there exists b̂ ∈ (b∗, b

∗) such that πi(b̂)/p1(b̂) =

1. If µi ≤ b̂, then πi(b̂) = p1(b̂) = 1 and p1(b̂ < 1, a contradiction. Hence,

assume µi > b̂. From part 2, πi(b̂) = p1(b̂) < pi(b̂). Thus from

(n − 2)
p′i
pi

+
p′1
p1

=
1

Hi(pi) − b
<

1

H1(p1) − b
= (n − 1)

p′i
pi

at b = b̂,

we have
p′

1

p1

<
p′

i

pi

and use it into

(n − 1)
π′

i

πi

=
1

Hi(πi) − b
>

1

Hi(pi) − b
= (n − 2)

p′i
pi

+
p′1
p1

at b = b̂.

We then have
π′

i

πi

>
p′

1

p1

at b = b̂.
The rest of the proof parallels that of part 1 but uses part 3 instead of part 1

of Lemma 1.
To prove part 4, for b̂ ∈ (b∗, µ1) we have 1 = pi(b̂) > π1(b̂). Suppose

that there exists b̂ ∈ (b∗, b
∗) such that pi(b̂)/π1(b̂) = 1. From part 2, we have

π1(b̂) = pi(b̂) > p1(b̂). Thus

(n − 1)
π′

1

π1
=

1

Hi(π1) − b
=

1

Hi(pi) − b
<

1

H1(p1) − b
= (n − 1)

p′i
pi

Following argument, which is similar to that of part 3, establishes part 4. ‖
Proof of Proposition 2
For b ∈ [µi, µ1], 1 = yi(b) > y1(b). For b ∈ [v

¯1, µi], CSD implies that part 1
immediately follows from (2.15).

To establish part 2, we first argue that part 2 holds in a punctured neigh-
borhood of b∗. If v̄i < v̄1, this is immediate because v̄i = φi(b

∗) < φ1(b
∗) = v̄1.

If v̄i = v̄1, then φi(b
∗) = φ1(b

∗) and so, from(2.8),

(n − 1)
F ′

i (φi)

Fi(φi)
φ′

i =
1

φ1 − b
=

1

φi − b
= (n − 2)

F ′

i (φi)

Fi(φi)
φ′

i +
F ′

1(φ1)

F1(φ1)
φ′

1 at b = b∗.

(A.13)
Given CSD, it follows that φ′

1 < φ′

i and so part 2 holds in a punctured neigh-
borhood of b∗, as claimed.

Suppose that there exists b̂ ∈ (b∗, b
∗) such that φi(b̂)/φ1(b̂) = 1. Then (A.13)

holds at b = b̂. Hence, the assumption of CSD implies that φi(b̂)/φ1(b̂) ≥ 1 for

all b ∈ (b̂, b∗), a contradiction of our former finding. Thus φi(b̂)/φ1(b̂) < 1 for
all b ∈ (b∗, b

∗).
To prove part 3, for any b ∈ (b∗, b

∗) such that yi(b) < φi(b), from (2.8),
(2.11) and part 2 of this proposition ,we have
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(n−1)
F ′

i (φi(b))

Fi(φi(b))
φ′

i(b) =
1

φ1(b) − b
<

1

φi(b) − b
<

1

yi(b) − b
= (n−1)

F ′

i (yi(b))

Fi(yi(b))
y′

i(b)

Hence

yi(b) < φi(b) ⇒
d

db

Fi(yi)(b)

Fi(φi)(b)
(A.14)

For some θ̂ ≤ 1, suppose that there exists b̂ ∈ (b∗, b
∗) satisfying

b̂ =
Fi(yi)(b)

Fi(φi)(b)

By (A.14), Fi(yi)(b)/Fi(φi)(b) is strictly increasing at b = b̂, hence

yi(b) < φi(b) and
d

db

Fi(yi)(b)

Fi(φi)(b)
for all b ∈ [b∗, b

∗) (A.15)

From (2.9), when v
¯1 = v

¯i = b∗, we have φi(b∗) = yi(b∗) = b∗, a contradiction

of (A.15). We conclude that b̂ can not exist, and so part 3 holds.
To prove part 4, note first that, by Corollary 3, b∗ ≤ µ1. Hence φ1(b

∗) ≥
y1(b

∗).
For any b ∈ (v

¯1, b
∗) such that φ1(b

∗) ≤ y1(b
∗), from (2.8), (2.11) and part 2

of this proposition ,we have

(n − 2)
F ′

i (φi)

Fi(φi)
φ′

i +
F ′

1(φ1)

F1(φ1)
φ′

1 =
1

φi − b
>

1

φ1 − b
≥

1

y1 − b
= (n − 1)

F ′

1(y1)

F1(y1)
y′

1

And from part 2 and (2.8), we have

(n − 1)
F ′

i (φi)

Fi(φi)
φ′

i =
1

φ1 − b
<

1

φi − b
= (n − 2)

F ′

i (φi)

Fi(φi)
φ′

i +
F ′

1(φ1)

F1(φ1)
φ′

1,

and so

(n − 1)
F ′

1(φ1)

F1(φ1)
φ′

1 > (n − 2)
F ′

i (φi)

Fi(φi)
φ′

i +
F ′

1(φ1)

F1(φ1)
φ′

1 > (n − 1)
F ′

1(y1)

F1(y1)
y′

1

Hence

d

db

F1(φ1)(b)

F1(y1)(b)
> 0.

The rest of proof is similar to that of part 3. ‖
Proof of Proposition 3
As defined in (2.12), v̄1 is the equilibrium bid of player 1 in symmetric case.

From Corollary 4, we have
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RAs
1 (v, F1, Fi) = maxb pn−1

i (b)(v − b)
≥ pn−1

i (b̄1(v))(v − b̄1(v))
> πn−1

1 (b̄1)(v)(v − b̄1(v))
= RS

1 (v, F1, F1)

We define bi(·) as the equilibrium bid of the weak buyer in asymmetric case,
i.e. bi(·) maximizes RAs

i (v, F1, Fi). Then we have

RS
i (v, Fi, Fi) = πn−1

i (b̄i)(v − b̄i)
≥ πn−1

i (bi)(v − bi)
> pn−2

i (bi)p1(b)(v − bi)
= RAs

i (v, F1, Fi).

‖
Proof of Proposition 4
Firstly we compare RAs and RS

1 .
From subsection (1)and(2), We have

RAs = b∗ −

∫ b∗

b∗

F1(φ1(b))F
n−1
i (φi(b))db;

and

RS
1 = µ1 −

∫ µ1

v
¯1

Fn
1 (y1(b))db;

Given the assumption in this proposition, i.e. neglecting the differences
between integral upper and lower bounds, from Corollary 4 Fn−1

i (φi(b)) >
F1(φ1(b)) > F1(y1(b)), it is easy to obtain that RS

1 > RAs. Similarly, we obtain
others results in this proposition. ‖

Proof of Lemma 2
From the expression of RAs

1 in section 4.2, integrating by parts, we have

RAs
1 = bFn−1

i (φi(b))F1(φ1(b))
∣

∣

b∗

b∗
−

∫ b∗

b∗

F1(φ1(b))
d

db
[bFn−1

i (φi(b))]db

Then we can obtain

RAs
1 = [1 − F1(v

¯1)]b∗F
n−1
i (b∗) +

∫ b∗

b∗

[1 − F1(φ1(b)]
d

db
[Fn−1

i (φi(b))]db

From (2.8), we have d
db

[1 − F1(φ1(b))] = φ1(b)
d
db

[Fn−1
i (φi(b))].

Substituting this expression into the integral and using the definition φ1(b) ≡
Q(φi(b)) , we then obtain
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RAs
1 = [1 − F1(v

¯1)]b∗F
n−1
i (b∗) +

∫ v̄i

b∗

[1 − F1(Q(v))]Q(v)
d

dv
[Fn−1

i (v)]dv

Symmetrically, for the weak buyer, we have

RAs
i = [1−Fi(b∗)]b∗F

n−2
i (b∗)F1(v

¯1)+

∫ b∗

b∗

[1−Fi(φi(b))]
d

db
[bFn−2

i (φi(b))F1(φ1(b))]db

Since from (2.8) we have d
db

[bFn−2
i (φi(b))F1(φ1(b))] = φi(b)

d
db

[F1(φ1(b))F
n−2
i (φi(b))],

using the definition of Q(·) we obtain

RAs
i = b∗F1(v

¯1)F
n−2
i (b∗)[1− Fi(b∗)] +

∫ v̄i

b∗

[1− Fi(v)]v
d

dv
[F1(Q(v))Fn−2

i (v)]dv.

Then we have

RAs
i = −

∫ v̄i

b∗

F1(Q(v))Fn−2
i (v)

d

dv
[(1 − Fi(v))v]dv

then,

RAs
i = b∗F1(v

¯1)F
n−2
i (b∗)[1− Fi(b∗)] +

∫ v̄i

b∗

[1− Fi(v)]v
d

dv
[F1(Q(v))Fn−2

i (v)]dv.

From this expression it is easy to obtain that one in Lemma. ‖
Proof of Lemma 3
If the weak buyer i (i = 2, 3, ..., n)’s valuation, vi, is larger than v

¯1, his
expected payment is

v
¯1F

n−2
i (v

¯1)F1(v
¯1) +

∫ vi

v
¯1

b
d

db
[Fn−2

i (b)F1(b)]db.

Taking the expectation over vi,
the expected revenue from the weak buyer is

RO
i =

∫ v̄i

v
¯1

{v
¯1F

n−1
i (v

¯1)F1(v
¯1) +

∫ vi

v
¯1

bd[Fn−2
i (b)F1(b)]}dFi(vi)

= v
¯1F

n−2
i (v

¯1)F1(v
¯1)[1 − Fi(v

¯1)] +
∫ v̄i

v
¯1

[1 − Fi(b)]bd[Fn−2
i (b)F1(b)]

= −
∫ v̄i

v
¯1

F1(v)Fn−2
i (v)d[v(1 − Fi(v))]

where i = 2, 3, ..., n. Then

RO
i = v

¯1F1(v
¯1)F

n−2
i (v

¯1)[1 − Fi(v
¯1)] +

∫ v̄i

v
¯1

[1 − Fi(b)]bd[F1(b)F
n−2
i (b)]
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From this expression, it is easy to obtain the Lemma.
Symmetrically, the strong buyer’s expected payment is

v
¯iF

n−1
i (v

¯i) +

∫ v1

v
¯i

bd[Fn−1
i (b)]

Taking the expectation over v1,
the expected revenue from the strong buyer is

RO
1 =

∫ v̄1

v
¯i

{v
¯iF

n−1
i (v

¯i) +
∫ v1

v
¯i

bd[Fn−1
i (b)]}dF1(v1)

= v
¯iF

n−1
i (v

¯i)[1 − F1(v
¯i)] +

∫ v1

v
¯i

[1 − F1(b)]bd[Fn−1
i (b)]}

‖
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