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1 Introduction

Models of learning in games typically start with the specification of a basic

behavioral rule on the side of the players, e.g. myopic best reply, truncated

fictitious play, or a variant of imitation. Since such basic dynamics exhibit

a multiplicity of rest points (e.g., any Nash equilibrium is a rest point for a

myopic best reply dynamics), it is necessary to perform a stability test.

Within the class of discrete-time, finite population models, one of the

most successful paradigms in the literature performs this test by adding

noise to the basic dynamics and studying the long-run outcomes as noise

vanishes. Formally, the basic dynamics is a Markov chain1 with multiple ab-

sorbing sets, which is made irreducible by the addition of noise. Probably the

best-known example of this methodology is the mistakes model, essentially

introduced by Kandori, Mailath, and Rob (1993) (for an imitation rule),

Young (1993), and Kandori and Rob (1995) (for myopic best reply). In this

model, agents are assumed to have a certain probability (independent across

agents and periods) of making mistakes, where a mistake is defined as choos-

ing some strategy at random, with a full-support probability distribution.

The mistake distribution is typically assumed to be uniform, although this

is of no relevance. The important feature of the model is that the shape of

this distribution is independent of the noise level.

The mistakes model has delivered important messages, ranging from the

almost universal selection of risk-dominant equilibria (as opposed to Pareto

efficient ones) in coordination games (Kandori, Mailath, and Rob (1993),

Young (1993)), to the dynamic relevance of “perfectly competitive” outcomes

in aggregative games (Vega-Redondo (1997), Alós-Ferrer and Ania (2005)).

One of the most attractive features of the mistakes model is that, thanks to a

result due to Freidlin and Wentzell (1988), it is possible to provide a simple

characterization of the set of long-run outcomes. These outcomes, called

stochastically stable states, are those having positive probability in the limit

1Throughout this paper, the term “Markov chain” refers to a discrete-time Markov

chain with stationary transition probabilities and finite state space.
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invariant distribution as noise vanishes. The well-known characterization

relies on minimizing the number of mutations associated to the transitions

depicted in certain graphs (trees) defined on the state space.

This approach is not exempt of critiques. First and foremost, selection

results are based on the number of mistakes necessary to destabilize a given

state, but, in a sense, all mistakes are treated equally. For example, choosing

a strategy which delivers almost a best response is just as severe a mistake

as choosing a strategy which delivers payoffs far away from the optimum.

Thus, the approach relies on the (cardinal) payoffs of the game only to a

limited extent. Second, Bergin and Lipman (1996) observed that, if the dis-

tribution of mistakes is allowed to be state-dependent, the model can be

twisted to select any pre-specified rest point. Thus, it becomes necessary to

have a well-justified theory on the origin of mistakes.2 One particular model

that accounts for both problems is the logit response dynamics, which was

introduced in Blume (1993). In this dynamics, which can be derived from

a random utility model, players adopt an action according to a full-support

distribution of the logit form, which allocates larger probability to those ac-

tions which would deliver (myopically) larger payoffs. It therefore combines

the advantage of having a specific theory about the origin of mistakes with

the fact that it takes the magnitude of (suboptimal) payoffs fully into ac-

count. Noise is incorporated in the specification from the onset, but choices

concentrate on best responses as noise vanishes.

The logit-response dynamics is not a particular case of the mistakes

model, and thus cannot benefit from the characterization of long-run out-

comes mentioned above. Indeed, results for the logit-response dynamics are

harder to obtain and are restricted to particularly well-behaved classes of

games. For example, binary action games (as in Blume (2003) or Maruta

(2002)) give rise to a birth-death chain whose invariant distribution can be

2In van Damme and Weibull (2002), mistakes arise in a rationalistic model where

agents have to exert costly effort to reduce mistake probabilities. Blume (2003) responds

to the Bergin and Lipman critique by characterizing the class of noise processes that select

risk-dominant equilibria in coordination games.
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characterized directly. Further, as shown by Blume (1997), if the base game

admits an exact potential, the process is reversible and again the invariant

distribution can be characterized directly. In addition to the restricted class

of games, the existing results also rely on specific assumptions about revision

opportunities, most notably on the assumption of one-at-a-time updating

(asynchronous learning). Given the sensitivity of the original mistakes model

to the specification of the dynamics, where it is sometimes the case that “who

learns when” is as important as “who learns how”, studying robustness issues

is fundamental.

In this paper we develop a characterization of the long-run outcomes of

the logit-response dynamics for arbitrary finite normal-form games. Fur-

thermore, our result applies to a generalization of the original logit-response

dynamics. In particular, we allow for an arbitrary specification of revision op-

portunities, encompassing e.g. independent revision opportunities (as in most

versions of the mistakes model) and asynchronous learning (as in Blume’s

(1993) model). In order to obtain our results, we build on the analysis of

Freidlin and Wentzell (1988) to characterize the invariant distribution of the

logit-response dynamics for fixed noise levels, and use it to develop a char-

acterization of the stochastically stable states.

In order to illustrate the method and its applicability, we proceed to study

the convergence of the logit-response model for the various generalizations

of the concept of potential game. Our method allows us to offer simple an-

swers to several open questions. We find that, first, convergence to the set

of Nash equilibria cannot be guaranteed for Monderer and Shapley’s (1996)

generalized ordinal potential games, but, second, convergence does obtain

for Voorneveld’s (2000) best-response potential games. We also show that

the latter result is robust to the specification of revision opportunities un-

der an additional condition which is satisfied both by independent inertia

and asynchronous learning models. Third, we study the value of potential

maximizers as an equilibrium refinement and find that the selection of po-

tential maximizers (which obtains for exact potential games under Blume’s
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(1993) asynchronous learning dynamics) fails two robustness tests. First, it

fails even for exact potential games if revision opportunities do not fall into

the asynchronous learning category. Second, it fails for any generalization of

potential games even if revision opportunities are asynchronous.

The paper is organized as follows. Section 2 reviews the logit-response

dynamics and introduces our generalized dynamics. Section 3 presents our

characterization of stochastically stable states, whose (technical) proof is

relegated to the Appendix. Section 4 applies this characterization to the

logit-response dynamics in best-response potential games. Section 5 discusses

a generalization of our results. Section 6 concludes.

2 The Logit-Response Dynamics

2.1 The Logit Choice Function

Let Γ = (I, (Si, ui)i∈I) be a finite normal-form game with player set I =

{1, 2, ..., N}, strategy sets Si and payoff functions ui defined on the set of

pure strategy profiles S = S1 × ... × SN . For a given player i, denote by

S−i =
∏

j #=i Sj the set of pure strategy profiles of i’s opponents. Following

convention, we denote s = (si, s−i) ∈ S and ui(si, s−i) = ui(s).

The game is played by boundedly rational players, who behave as my-

opic best repliers, but tremble in their decisions. Every period, some set of

players is chosen to update their actions. We will further specify revision

opportunities below.

When given the chance to revise, player i observes the actions s−i of the

opponents. The probability of choosing action si given the current profile

s−i is given by the logit choice function

pi(si, s−i) =
eβui(si,s−i)

∑

s′
i
∈Si

eβui(s′i,s−i)
, (1)

where 0 < β < ∞.

The scalar β can be interpreted as an inverse measure of the level of noise

in players’ decisions. As β → ∞, the described rule converges to the myopic
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best reply rule. For any 0 < β < ∞, players choose non-best replies with

positive probability, but actions that yield smaller payoffs are chosen with

smaller probability. The dynamic adjustment process defines an irreducible

and aperiodic Markov chain {Xβ
t }t∈N on the state space S, with stationary

transition probabilities P β
ss′ = Prβ(st = s′|st−1 = s) and (unique) invariant

distribution µβ.

For any specification of revision opportunities, we will refer to this dy-

namics as a logit response dynamics. Consider the particular case where

exactly one player is randomly selected each period to revise his strategy,3

and let qi > 0 denote the probability that player i is selected. For this case,

which we will refer to as asynchronous learning, the dynamics was first in-

troduced (with qi = 1
/
N) by Blume (1993)4 and has been further developed

in e.g. Blume (1997, 2003), Young (1998), and Baron, Durieu, Haller, and

Solal (2002a, 2002b). Taken as a behavioral rule, the underlying logit choice

function (1) is rooted in the psychology literature (Thurstone (1927)). From

the microeconomic point of view, it can be given a justification in terms of

a random-utility model (see e.g. McKelvey and Palfrey (1995) for details).

Hofbauer and Sandholm (2002, Section 2) observe that it is also the only

choice function of the “quantal” form

Ci(ui) =
w(ui(si, s−i))

∑

s′i∈Si
w(ui(s

′
i, s−i))

with w(·) an increasing and differentiable function of the payoffs, which can

be derived as the result of both a stochastic and a deterministic perturbation

of the payoffs.5 Thus, the logit-response dynamics exhibits solid decision-

theoretic foundations.

3This can be interpreted as a reduced form (technically, the embedded chain) of a

continuous-time model where players receive revision opportunities according to “Poisson

alarm clocks.”
4Blume (1993) refers to this dynamics as log-linear response.
5Mattsson and Weibull (2002) and Baron, Durieu, Haller, and Solal (2002a, 2002b)

show that logit-response arises in the framework of van Damme and Weibull (2002) when

control costs adopt a specific functional form.
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2.2 Asynchronous Logit Response in Potential Games

The game Γ is a potential game6 (Monderer and Shapley (1996)) if there

exists a function ρ : S → R, called the potential, such that for each i ∈ I,

si, s
′
i ∈ Si, s−i ∈ S−i

ui(si, s−i) − ui(s
′
i, s−i) = ρ(si, s−i) − ρ(s′i, s−i).

The global maximizers of the potential function ρ form a subset of the set

of Nash equilibria of Γ. If Γ is a potential game, it follows that ui(si, s−i) =

ρ(si, s−i) + λ(s−i), where λ(s−i) is independent of si.
7 Thus (1) can be

simplified to

pi(si, s−i) =
eβui(si,s−i)

∑

s′i∈Si
eβui(s′i,s−i)

=
eβρ(si,s−i)

∑

s′i∈Si
eβρ(s′i,s−i)

. (2)

It is then straightforward to show (see Blume (1997)) that the invariant

distribution of the logit-response dynamics adopts a Gibbs-Boltzmann form,

i.e. the potential function becomes a potential for the stochastic process. The

proof (which is included for completeness only) takes advantage of the fact

that the reformulation (2) implies that the process is reversible.

Proposition 1. Let Γ be a potential game with potential ρ. The invariant

distribution of the logit-response dynamics with asynchronous learning is

µβ(s) =
eβρ(s)

∑

s′∈S eβρ(s′)
.

Proof. It is enough to show that µβ as given in the statement satisfies the

detailed balance condition, i.e. µβ(s)P β
ss′ = µβ(s′)P β

s′s for all s, s′ ∈ S. This

is clearly fulfilled if s = s′, and also if s and s′ differ in more than one

coordinate, since P β
ss′ = P β

s′s = 0 in this case. Hence assume w.l.o.g. that s

and s′ differ exactly in coordinate i, that is si '= s′i and sj = s′j for all j '= i.

It follows that

µβ(s)P β
ss′ =

eβρ(s)

∑

s′′∈S eβρ(s′′)
qi

eβρ(s′i,s−i)

∑

s′′i ∈Si
eβρ(s′′i ,s−i)

= µβ(s′)P β
s′s.

6Also called partnership games. See Hofbauer and Sigmund (1988).
7Fix a strategy s0 ∈ Si, and define λ(s−i) = ui(s0, s−i) − ρ(s0, s−i).
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where the last equality holds due to s−i = s′−i. !

As β → ∞, the invariant distribution of the process converges to an

invariant distribution of the best-reply dynamics. We say that a state s ∈ S

is stochastically stable if limβ→∞ µβ(s) > 0. An immediate consequence of

Proposition 1 is

Corollary 1. Let Γ be a potential game. The set of stochastically stable

states of the logit-response dynamics with asynchronous learning is equal to

the set of maximizers of ρ.

This Corollary provides of course a readily applicable result.8 In our view,

it is also important for two additional reasons. First, it is a convergence

result. The asynchronous logit response dynamics always converges to the

set of Nash equilibria in the class of exact potential games. Second, it is a

selection result. In particular, the logit-response dynamics provides support

for treating the set of potential maximizers as an equilibrium refinement for

potential games.

The latter finding has motivated a large part of the literature of learning

in games in recent years, and indeed the selection of potential maximizers

has become a test of the reasonability of a learning dynamics.9 It is therefore

important to know how robust both parts of Corollary 1 are. That is, we

pose the question of whether the convergence to Nash equilibria and the

selection of potential maximizers extend to more general classes of games

and dynamics.

Proposition 1 (and hence Corollary 1), however, rely on the knife-edge

technical fact that the exact potential of the game allows to identify the in-

variant distribution of the stochastic process for positive noise level. Clearly,

the proof cannot be generalized any further. In the next section, we develop a

framework which will allow us to provide exact results for both more general

games and more general dynamics.

8For example, Sandholm (2007) relies on this result to build a model of evolutionary

implementation.
9See e.g. Hofbauer and Sorger (1999).
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2.3 Revision Processes and a Generalized Dynamics

The existing results for the logit-response rule (as e.g. Corollary 1) rely on the

asynchronicity assumption to establish the convenient Gibbs-Boltzmann form

for the invariant distribution. Here we will consider a more general approach

allowing for arbitrary specification of updating opportunities. We illustrate

this by considering a general class of revision processes. The motivation for

the generalization is as follows. In our view, a learning dynamics in games is

made of a behavioral rule and a specification of revision opportunities (i.e.

the speed of the dynamics). Thus, it is important to know which results are

due to the behavioral rule and which ones hinge on the exact specification of

the revision process. Studying general revision processes for a given dynamics

therefore becomes an important robustness check.

Definition 1. A revision process is a probability measure q on the set of

subsets of I, P(I), such that

∀ i ∈ I ∃J ⊆ I such that i ∈ J and qJ > 0 (3)

where, for each J ⊆ I, qJ = q(J) is interpreted as the probability that exactly

players in J receive revision opportunities (independently across periods).

Condition (3) merely specifies that every player has some probability of

being able to revise in some situation. No further restriction is placed on the

revision process, which allows for a wide range of models to be considered.

We list now three leading examples.

Let Rq = {J ⊆ I|qJ > 0} denote the set of revising sets, i.e. sets of

players which might obtain revision opportunity (as a whole) with positive

probability. If Rq = {{i}|i ∈ I}, we say that the dynamics exhibits asyn-

chronous learning and write qi = q{i}. As commented above, this includes

the asynchronous logit-response dynamics of Blume (1993) (where qi = 1
N

).

If Rq = P(I), we speak of independent learning. That is, every subset

of players has positive probability of being able to revise. For example, a

standard version of the mistakes model (see e.g. Sandholm (1998)) is a par-

ticular case which postulates independent inertia, i.e. each player revises with
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a fixed, independent probability 0 < p < 1. Thus qJ = p|J | (1 − p)N−|J | > 0

for each subset J .

We can also consider a model of instantaneous learning, where all play-

ers receive revision opportunities every period, i.e. Rq = {I}. Other exam-

ples could include specific correlation in revision opportunities among certain

groups of players,10 or bounds to the number of players revising each period.

Fix a revision process q. For any two strategy profiles s, s′ ∈ S, let

Rs,s′ = {J ∈ Rq|s′k = sk∀ k /∈ J} be the set of revising sets potentially

leading from s to s′. Note that from a given s ∈ S, different alternative

revising sets might give rise to the same transition, because players selected

to revise might stay with their previous action. However, under asynchronous

learning |Rs,s′| ≤ 1 for all s '= s′. We say that a transition from s to s′ is

feasible if Rs,s′ '= ∅.

The logit-response dynamics with revision process q is a Markov chain on

the state space S with stationary transition probabilities given by

Ps,s′ =
∑

J∈Rs,s′

qJ

∏

j∈J

eβ·uj(s′j ,s−j)

∑

s′′j ∈Sj
eβ·uj(s′′j ,s−j)

.

Define UJ(s′, s) =
∑

j∈J uj(s
′
j , s−j). Let RJ

s = {s′ ∈ S|s′k = sk∀ k /∈ J} be

the set of states potentially reached from s when the revising set is J . We

can then rewrite the transition probabilities as

Ps,s′ =
∑

J∈Rs,s′

qJ
eβ·UJ(s′,s)

∑

s′′∈RJ
s
eβ·UJ(s′′,s)

. (4)

3 Stochastic Stability

Given a general revision process q, the logit-response dynamics is in general

not a birth-death chain. Even if this were the case (e.g. under asynchronicity

in binary action games), unless the game is an (exact) potential game an exact

characterization of the invariant distribution was until now not available. We

10Since we do not restrict attention to symmetric games, this possibility might be of in-

dependent interest, e.g. for buyers-sellers models as in Alós-Ferrer and Kirchsteiger (2007).
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now develop a characterization of the set of stochastically stable states of the

logit-response dynamics which relies precisely on such a characterization of

the invariant distribution.

Given a state s, define an s-tree to be a directed graph T such that there

exists a unique path from any state s′ ∈ S to s. The key concept for our

characterization is as follows:

Definition 2. A revision s-tree is a pair (T, γ) where

(i) T is an s-tree,

(ii) (s, s′) ∈ T only if Rs,s′ '= ∅ (only feasible transitions are allowed), and

(iii) γ : T → P(I) is such that γ(s, s′) ∈ Rs,s′ for all (s, s′) ∈ T .

Thus, there are two differences between a revision tree and a tree as used

in the characterization for the mistakes model. First, in a revision s-tree,

edges corresponding to unfeasible transitions are not allowed.11 Second, in a

revision s-tree (T, γ), γ labels each edge of T with a revising set which makes

the corresponding transition potentially feasible.

Remark 1. Suppose that a revision process satisfies that for all s, s′ ∈ S,

s '= s′, either Rs,s′ = ∅ or |Rs,s′| = 1. This is e.g. true for asynchronous

learning and instantaneous learning. Then, for each link (s, s′) in a revision

tree there exists exactly one revising set making the transition from s to s′

feasible. In other words, given a tree T using feasible transitions only, there

exists a unique mapping γ such that (T, γ) is a revision tree.

3.1 A Characterization

Let T (s) denote the set of revision s-trees. The waste of a revision tree

(T, γ) ∈ T (s) is defined as

W (T, γ) =
∑

(s,s′)∈T

(

max
s′′∈S

Uγ(s,s′)(s
′′, s)

)

− Uγ(s,s′)(s
′, s).

11Thus, actually the concept of revision tree depends on the revision process q. We drop

this dependency for notational simplicity.
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or, equivalently,

W (T, γ) =
∑

(s,s′)∈T

∑

j∈γ(s,s′)

(

max
s′′j ∈Sj

uj(s
′′
j , s−j) − uj(s

′
j, s−j)

)

.

In words, the waste of a revision tree adds all the individual (ex-ante,

myopic) payoff wastes generated across the transitions depicted in the tree,

relative to the payoffs that could have been reached by adopting best re-

sponses. Obviously, a transition generates zero waste in this sum if and only

if it involves only best responses.

Intuitively, the waste of a revision tree is an inverse measure for its likeli-

hood in the logit-response dynamics. It is analogous to the concept of costs in

the mistakes model, with the obvious difference that wastes are real numbers,

rather than natural ones (number of mistakes).12 The stochastic potential of

a given state is obtained by minimizing waste across revision trees rooted in

that state.

Definition 3. The stochastic potential of a state s is

W (s) = min
(T,γ)∈T (s)

W (T, γ).

As mentioned above, a state is stochastically stable if it has positive

probability in the limit invariant distribution of a noisy process as noise

vanishes (in our case, when β → ∞). Our characterization of stochastically

stable states is as follows.

Theorem 1. Consider the logit-response dynamics (with any revision pro-

cess). A state is stochastically stable if and only if it minimizes W (s) among

all states.
12An alternative name for the waste would be regret. We prefer to avoid this name for two

reasons. First, there is a growing game-theoretic literature where players choose actions

according to their associated regret (see e.g. Hart and Mas-Colell (2000)). For us, the

waste is rather a technical device and not an objective target. Second, except in the case

of asynchronous learning, the waste of a player’s choice is only potential regret, since the

corresponding payoff will not actually be experienced due to other players simultaneously

updating their choices.
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The proof, which is relegated to the Appendix, is itself based on an ex-

act characterization of the invariant distribution for finite β (Lemma 2 in

the Appendix). Theorem 1 yields a “tree-surgery” technique for the charac-

terization of stochastically stable states of the logit-response dynamics, for

arbitrary finite normal-form games and with arbitrary revision processes. It

is analogous to the statement that stochastically stable states are those hav-

ing trees involving a minimal number of mistakes in the mistakes model. In

our framework, the number of mistakes is replaced by the sum of payoff losses

from transitions which are not possible in the limit as β → ∞.

This result makes it possible to focus on minimal waste revision trees

to examine stochastic stability. If the set of revising sets is a singleton for

every possible transition, as is the case e.g. for asynchronous and instanta-

neous learning, there is exactly one revision tree per tree involving feasible

transitions only, and thus we can directly examine minimal waste trees.

3.2 A Radius-Coradius Result

One of the most powerful results for the actual analysis of models based

on the mistakes formulation is the Radius-Coradius theorem due to Ellison

(2000). In order to support our tractability claim for the logit model, we

now prove a result analogous to Ellison’s (2000) Radius-Coradius Theorem

in our framework. A directed graph P on S is a path if there exists a finite,

repetition-free sequence (s0, s1, ..., sn) of states in S with n = |P |, such that

(sm, sm+1) ∈ P and Rsm,sm+1 '= ∅ for all m = 0, ..., n− 1. The state s0 is the

initial point of the path, the state sn is the terminal point. Since the logit

response dynamics is irreducible for any revision process, the set of paths

between any two given states is nonempty.

Note that a path as described above is an sn-tree on the subset of states

{s0, ..., sn} and thus a revision path (P, γ) can be simply defined as a particu-

lar type of revision tree where P is a path. Denote the set of all revision paths

with initial point s and terminal point s′ by P(s, s′). The waste W (P, γ) of

a revision path (P, γ) ∈ P(s, s′) is simply its waste as a revision tree.
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The basin of attraction13 of a state s, B(s) ⊆ S is the set of all states

s′ such that there exists a revision path (P, γ) ∈ P(s′, s) with W (P, γ) = 0.

The limit set of state s is the set of states which are connected back-and-forth

with s at zero waste, i.e. L(s) = {s′ ∈ s|s′ ∈ B(s) and s ∈ B(s′)}.

The Radius of a state s is defined as

R(s) = min{W (P, γ)|s′ /∈ B(s), (P, γ) ∈ P(s, s′)}

and is a measure of how easy it is to leave state s. Since the waste is based

on payoff differences and not number of mistakes, it takes into account not

only the size but also the “depth” of the basin of attraction. The Coradius

of s is given by

CR(s) = max
s′ /∈B(s)

min{W (P, γ)|s′′ ∈ B(s), (P, γ) ∈ P(s′, s′′)}

and is a measure of how hard it is to reach s.

Proposition 2. Suppose a state s ∈ S is such that R(s) > CR(s). Then,

the stochastically stable states are exactly those in L(s).

Proof. Let s∗ ∈ S, s∗ /∈ B(s). Let (T ∗, γ∗) ∈ T (s∗) solve min(T,γ)∈T (s∗) W (T, γ).

Consider the tree T ∗ and the complete path from s to s∗ in this tree. Since

s∗ /∈ B(s), this path eventually leaves the basin of attraction of s. Let s1 be

the first state in this path which is not in B(s). Delete the part of the path

from s to s1. For all states but s that have become disconnected, the fact

that they are in B(s) allows to connect them to s (adding the corresponding

transitions) with waste zero. If this creates any duplicated edges in the graph,

delete the duplicate, but keep only the revising set which ensures waste zero.

This saves a waste weakly larger than R(s) (by definition of Radius).

13There is a subtle difference between our result and Ellison’s (2000). Ellison defines the

basin of attraction of a state s as the set of states from which the (unperturbed) dynamics

will eventually lead to s with probability one, whereas we define the basin of attraction of

s as the set of states such that the unperturbed dynamics (i.e. that involving zero-waste

transitions only) leads to s with positive probability.
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Add to the revision tree a revision path (P, γ) ∈ P(s∗, s) which solves

min{W (P, γ)|s′′ ∈ B(s), (P, γ) ∈ P(s∗, s′′)}. Delete any duplicated tran-

sitions created when adding (P, γ), keeping the revising sets in γ. This

increases the waste by weakly less than CR(s) (by definition of Coradius).

After these two operations we have constructed a new revision tree, rooted

in s. If CR(s) < R(s), the total waste has been strictly reduced. It follows

that the stochastic potential of s is strictly smaller than the stochastic po-

tential of any s∗ not in the basin of attraction of s, thus the latter can not

be stochastically stable by Theorem 1.

Consider now a state s∗ ∈ B(s) such that s /∈ B(s∗). Consider a minimal-

waste s∗-revision tree. Since s /∈ B(s∗), in the path connecting s to s∗

contained in this tree there exists some transition, say from s1 to s2, which

causes strictly positive waste. Delete it. Since s∗ ∈ B(s), there exists a zero-

waste revision path from s∗ to s. Add this path to the revision tree, deleting

duplicated transitions. The result is an s1-revision tree with strictly smaller

waste, thus again by Theorem 1, s∗ cannot be stochastically stable.

Last, consider any state s∗ ∈ L(s), s∗ '= s. Clearly, minimal waste revision

trees for both states must have the same waste. In summary, no state out

of L(s) can be stochastically stable, but all states in L(s) have the same

stochastic potential. Since there are finitely many states, there must exist

states with minimum stochastic potential and the conclusion follows. !

Following Ellison (2000), it is possible to extend this result in two ways.

The first would allow to apply the analysis to sets of states rather than a single

state. The second would deal with the concept of “modified coradius”, which

subtracts the radius of intermediate states when computing the coradius, thus

providing a more involved but stronger result.

4 Learning in Best-Response Potential Games

In this Section, we illustrate the use of our characterization and provide

definite answers to the questions we posed above, that is, to which extent
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are the findings of convergence to Nash equilibria and selection of potential

maximizers robust. To check robustness with respect to the dynamics, we will

consider arbitrary revision processes as discussed above. To check robustness

with respect to the class of games, we will consider the various generalizations

of the concept of potential game.

4.1 Generalized Potential Games

As mentioned in Section 2.2, a finite normal form game Γ = (I, (Si, ui)i∈I) is

an (exact) potential game if there exists a function ρ : S -→ R (the potential)

such that

ui(si, s−i) − ui(s
′
i, s−i) = ρ(si, s−i) − ρ(s′i, s−i) (P)

for all i ∈ I, si, s
′
i ∈ Si, and s−i ∈ S−i. The set of potential maximizers has

been shown to be an appealing equilibrium refinement for this class of games.

However, it can also be argued that the class of potential games is relatively

narrow. Monderer and Shapley (1996) generalized this class as follows. Γ

is a weighted potential game if (P) is replaced by ui(si, s−i) − ui(s
′
i, s−i) =

wi (ρ(si, s−i) − ρ(s′i, s−i)) for fixed weights wi > 0, i ∈ I. Further, Γ is an

ordinal potential game if (P) is replaced by the property that ui(si, s−i) −

ui(s
′
i, s−i) and ρ(si, s−i)−ρ(s′i, s−i) have the same sign. Last, Γ is a generalized

ordinal potential game if (P) is replaced by the property that ui(si, s−i) −

ui(s
′
i, s−i) > 0 implies that ρ(si, s−i) − ρ(s′i, s−i) > 0.

The appeal of generalized ordinal potential games rests on the follow-

ing characterization. A finite game is generalized ordinal potential if and

only if it has the Finite Improvement Property, that is, if any path of states

generated through unilateral deviations involving strict improvements is nec-

essarily finite.

Obviously, every potential game is a weighted potential game, every

weighted potential game is an ordinal potential game, and every ordinal

potential game is generalized ordinal potential. Voorneveld (2000) has pro-

vided a different generalization of the class of ordinal potential games, and

has shown that it is neither included in nor includes the class of generalized
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ordinal potential games. The game Γ is a best-response potential game if

there exists a function ρBR : S → R such that ∀i ∈ I, and s−i ∈ S−i,

arg max
si∈Si

ui(si, s−i) = arg max
si∈Si

ρBR(si, s−i).

Best-response potential games admit a characterization as follows (see

Voorneveld (2000, Theorem 3.2)). A normal form game with finitely many

players and countable strategy sets is a best-response potential game if and

only if any path of states generated through unilateral best responses, and

containing at least one strict improvement, is non-cyclic.

4.2 A Convergence Result

We turn now to the question of convergence to Nash equilibria.14 Theorem

1 allows the following first, immediate observation. In generalized ordinal

potential games, convergence to Nash equilibria is not guaranteed, even under

asynchronous learning. In other words, non-Nash states can be stochastically

stable. To see this, consider the following example.

Example 1. Consider asynchronous learning. The following 2× 2 game (left-

hand-side table) is Example 4.1.(a) in Voorneveld (2000).

a b

a 0,0 0,1

b 0,1 1,0

a b

a 0 1

b 3 2

Payoff Table G.O. Potential

14Hofbauer and Sandholm (2002) use stochastic approximation techniques to study con-

vergence of closely-related dynamics to the set of Nash equilibria in potential and super-

modular games. The strategy is taking the limit as the population size grows to infinity

and the time interval goes to zero, and approximating the paths of the dynamics through

a differential equation. In contrast, we study convergence directly on the finite, fixed-

population-size, discrete-time dynamics. Baron, Durieu, Haller, and Solal (2002a) have

established convergence of the asynchronous logit-response dynamics to partial Nash con-

figurations, i.e. strategy profiles where at least one player is choosing a best response.
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The only pure-strategy Nash equilibrium is (b, a). This game has a gener-

alized ordinal potential ρ given by the right-hand-side table. However, the

game exhibits a best-response cycle, and hence is not a best-response po-

tential game. This best-response cycle contains the links (aa, ab), (ab, bb),

(bb, ba), and (ba, aa). Since each of these transitions is a best response for

the updating player, we can construct a zero-waste revision tree for all four

states. In conclusion, all four states are stochastically stable, even though

only one of them is a Nash equilibrium.15

This example shows that non-Nash states can be stochastically stable in

generalized ordinal potential games under the logit-response dynamics with

asynchronous learning. Thus, the next question of interest is when does

convergence to Nash equilibria obtain. The example above shows that the

answer is negative for the class of generalized ordinal potential games.

As an application of Theorem 1, though, we can answer this question

in the affirmative for best-response potential games, and hence ordinal po-

tential games. We will also simultaneously perform a robustness check of

the convergence result to variations in the way players are chosen to update

strategies. Say that a revision process is regular if q{i} > 0 for all i ∈ I. Both

standard revision processes in the learning literature, asynchronous learning

and independent learning, are clearly regular.

Theorem 2. If Γ is a finite best-response potential game, the set of stochas-

tically stable states of the logit-response dynamics with any regular revision

process is contained in the set of Nash equilibria.

Proof. Fix a state s0 ∈ S which is not a Nash equilibrium of Γ, and hence

there exists a coordinate i ∈ I such that maxsi∈Si
ui(si, s

0
−i) > ui(s

0). Con-

sider any revision tree (T 0, γ0) ∈ T (s0) with associated waste W (T 0, γ0).

Construct a revision tree (T 1, γ1) from (T 0, γ0) as follows. Let s1 = (s1
i , s

0
−i)

where s1
i ∈ arg maxsi∈Si

ui(si, s
0
−i). Add the link (s0, s1) with revising set {i}

15In particular, state ab is among the stochastically stable states, even though the set

of Nash equilibria is {[(p, 1 − p), a] |0 ≤ p ≤ 1

2
}, i.e. player 2 never plays strategy b in an

equilibrium.
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(which is possible by regularity of the revision process) and delete the link

(s1, s2) leaving s1 in T 0. The new graph is a tree T 1 ∈ T (s1). The additional

transition from s0 to s1 causes no waste by definition of s1. If the contribution

of the deleted link (s1, s2) to W (T 0, γ0) was positive, W (T 1, γ1) < W (T 0, γ0)

holds.16

If the contribution was zero and thus W (T 1, γ1) = W (T 0, γ0), proceed

as follows. Add a link (s1, ŝ2) with revising set {i} where ŝ2 = (s2
i , s

1
−i)

for some i ∈ γ0(s1, s2) such that s2
i '= s1

i . This causes zero waste because

(s1, s2) caused zero waste. Delete the link (ŝ2, s3) leaving ŝ2 in T 1. The new

(labelled) graph is a revision-tree (T 2, γ2) ∈ T (ŝ2), with zero waste for the

link (s1, ŝ2).

Iterate the described procedure until deletion of a positive waste link

(ŝn, sn+1) occurs, i.e. move along a best-response compatible path of states.

Since Γ is a best-response potential game, any such path, which started with

a strict improvement for a player, is non-cyclic (Voorneveld (2000, Theorem

3.2)), such that iteration actually ends with a revision tree (T n, γn) ∈ T (ŝn)

where ŝn '= s0 and W (T n, γn) < W (T 0, γ0). Hence no (T, γ) ∈ T (s0) can

have minimum waste and, by Theorem 1, s0 is not stochastically stable. !

This result generalizes both the class of potential games and the class

of logit-response dynamics for which convergence to Nash equilibria obtains.

The proof relies crucially on the characterization of finite best-response po-

tential games, that is, the property that any path of states generated through

unilateral best responses, containing at least one strict improvement, is non-

cyclic. This property is not necessarily fulfilled by generalized ordinal poten-

tial games (e.g. it fails in Example 1)

The assumption of regularity of the revision process cannot be dropped.

To see this, consider instantaneous learning, where every player receives re-

vision opportunity with probability one. In this case, convergence to Nash

equilibria can fail even for exact potential games.

16We use the term “waste of a link” as a shortcut for “waste of the revision tree formed

by a single link and the chosen revising set”.
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Example 2. The following 2 × 2 game is symmetric, and hence an exact

potential game (and also a best-response potential game). It has two strict

Nash equilibria, (a, a) and (b, b).

a b

a 1,1 0,0

b 0,0 1,1

a b

a 1 0

b 0 1

Payoff Table Exact Potential

Under asynchronous learning, both Nash equilibria are stochastically sta-

ble, since they both maximize the potential. With our approach it is easy

to verify that the same holds under independent learning. Now consider in-

stantaneous learning. Once a Nash state is reached, a waste of 1 is required

to leave it, i.e. one of the updating players needs to make a mistake to move

to either (a, b) or (b, a).17 Once the process reaches either (a, b) or (b, a), it

alternates between these two states if nobody makes a mistake. Leaving this

cycle again causes a waste of 1. Hence the stochastic potential of all states

is 2, and they are all stochastically stable. That is, convergence to Nash

equilibria might fail even for exact potential games.

4.3 The Irrelevance of Potential Maximizers

This leads us to the second question of interest, namely whether potential

maximizers are selected by the logit response dynamics in general. The

following example shows that states which globally maximize the potential

function of a weighted potential game might fail to be stochastically stable.

Thus, although all stochastically stable states of the logit-response dynamics

are Nash equilibria for best-response potential games, stochastic stability

does not support the use of potential maximizers as an equilibrium refinement

for any generalization of potential games, even with asynchronous learning.

17Moving directly from one of the Nash states to the other causes a waste of 2, because

both players must make a mistake.
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Example 3. Let Γ be an asymmetric, pure-coordination, 2 × 2 game with

strategy sets S1 = S2 = {a, b} and payoffs as given in the following (left-

hand-side) table:

a b

a 2,2 0,0

b 0,0 10,1

a b

a 2 -6

b 0 4

Payoff Table Weighted Potential

This game has a weighted potential ρ given by the right-hand-side table and

weights w1 = 1 and w2 = 1/4. The equilibrium (b, b) is the (unique) potential

maximizer.

Consider asynchronous learning. It is straightforward to construct the

minimum-waste trees. Note that, since the game is a strict coordination

game, states (a, b) and (b, a) can be connected to either of the pure Nash

equilibria at zero waste. Thus the minimum waste of a (b, b) tree is equal to

the minimum waste necessary to leave (a, a), and vice versa. The waste of

the link (a, a) -→ (b, a) is w1 · (2− 0) = 2; the waste of the link (a, a) -→ (a, b)

is w2 · (2 − (−6)) = 2. Thus the stochastic potential of (b, b) is 2. Consider

now state (b, b). The waste of the link (b, b) -→ (a, b) is w1 · (4 − (−6)) = 10;

the waste of the link (b, b) -→ (b, a) is w2 · (4 − 0) = 1. Hence the stochastic

potential of (a, a) is 1 and we conclude that (a, a) is stochastically stable,

despite not maximizing ρ. This result can also be derived using the Radius-

Coradius Theorem. Obviously, R(a, a) = CR(b, b) = 2 and CR(a, a) =

R(b, b) = 1, implying that (a, a) is stochastically stable.

This example shows that the selection of potential maximizers for the

asynchronous logit-response is not robust even to slight generalizations of

the class of potential games. Now we consider whether the result is robust

to generalizations of the class of revision processes.

There are two major differences between the asynchronous-learning case

and, say, a process with independent learning. First, the set of revision
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trees for each state grows, since transitions between any two states become

possible. Second, each transition in which not all N players change their

action becomes possible via more than one revising set.

Concerning stochastic stability, though, this second issue raises no diffi-

culties. Consider the link (s, s′) where the players in J change their action,

and assume that a revising set J ′ ⊃ J is selected for this transition. It is easy

to see that the corresponding waste can only be larger than if the revising

set J was selected instead, because sticking to their action might be a non-

best response for players in J ′ \ J . Hence, when computing the stochastic

potential of a state, we can restrict attention to selections for trees that pick

the most “parsimonious” revising sets, which prescribes a unique selection

for each tree.18

The larger set of trees can, however, substantially change other results.

We proceed to show that, under independent learning, potential maximizers

may fail to be selected even in exact potential games. Thus the result of

Corollary 1 is not robust to changes in the specification of revision opportu-

nities either.

Example 4. Consider a 3 × 3 × 2-game with exact potential as given below.

Player 1 chooses rows, player 2 chooses columns, and player 3 chooses tables.

The payoffs of pure-strategy Nash equilibria are marked by an asterisk.

g

d e f

a 10∗ 6 0

b 6 0 0

c 0 0 9∗

h

d e f

a 0 0 0

b 0 1∗ 1∗

c 0 1∗ 1

Under asynchronous learning, the potential maximizing state (a, d, g) is stochas-

18Essentially, that is the reason why Theorem 2 holds for any regular revision process.
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tically stable by Corollary 1. Consider independent learning instead. The

basin of attraction of state (c, f, g) contains all states except (a, d, g), (a, e, g)

and (b, d, g). Any minimal waste path from (c, f, g) to one of these states, for

example the path ((c, f, g), (a, f, g), (a, d, g)) or ((c, f, g), (c, f, h), (c, d, h), (b, d, g))

is associated with a waste of 9, such that R(c, f, g) = 9. The transition

((a, d, g), (b, e, g)), though, has an associated waste of only 8 when players 1

and 2 switch simultaneously. The states (a, e, g) and (b, d, g) can be connected

to B(c, f, g) at an even lower waste, such that CR(c, f, g) = 8. Proposition

2 then implies that (c, f, g) is stochastically stable, despite the fact that it

does not maximize the exact potential.

5 Generalizations and Extensions

Although we have focused on the logit-response dynamics, our approach to

stochastic stability is susceptible of generalization to a wider class of learning

processes. In this Section, we briefly report on this generalization.

Consider a Markov chain {Xt}t∈N on a finite state space Ω. Denote the

stationary transition probabilities by Pω,ω′ = Pr(Xt = ω′|Xt−1 = ω). A

transition mechanism from state ω is a mapping Q : Ω → R+ such that

Q(ω′) > 0 for at least some ω′ ∈ Ω. The interpretation is that from a

given state ω, there might be different, alternative processes giving rise to a

transition to other states. Conditional on the transition mechanism Q being

selected, a state ω′ ∈ Ω will be reached from ω with probability

Q(ω′)/
∑

ω′′∈Ω

Q(ω′′).

Denote by Mω the set of transition mechanisms available at ω, and let

M =
⋃

ω∈Ω
Mω. Note that the sets Mω need not be pairwise disjoint, so that

a transition mechanism might be available at several or even all states (e.g.

a random mutation). Further, let Mω,ω′ = {Q ∈ Mω|Q(ω′) > 0}, i.e. the set

of mechanisms which are available at ω and may lead to ω′.
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Definition 4. Let Xt be a Markov chain on the finite state space Ω. A

decomposition of Xt is a tuple (Mω, qω)ω∈Ω such that, for each ω ∈ Ω,

(i) Mω is a nonempty, finite set of transition mechanisms,

(ii) qω ∈ ∆Mω is a full-support probability measure on Mω, and

(iii) for each ω′ ∈ Ω,

Pω,ω′ =
∑

Q∈M
ω,ω′

qω(Q)
Q(ω′)

∑

ω′′∈Ω
Q(ω′′)

.

Obviously, any finite Markov chain admits a trivial (and not very useful)

decomposition with Mω = {Qω} and Qω(ω′) = Pω,ω′ for all ω′.

Definition 5. A log-linear Markov family is a family of finite Markov chains

Xβ
t with β ∈ [1, +∞[, defined on a common state space Ω, such that

(i) the chain Xt = X1
t is irreducible and admits a decomposition (Mω, qω)ω∈Ω,

(ii) each Xβ
t with β > 1 admits a decomposition (Mβ

ω , qω)ω∈Ω given by

Mβ
ω = {Qβ

ω|Qω ∈ Mω}

where lnQβ
ω(ω′) = β · ln Qω(ω′) whenever Qω(ω′) > 0 (and Qβ

ω(ω′) = 0

otherwise).

A log-linear Markov family can be seen as an interpolation between the X1
t

chain (the “pure noise” chain) and a “limit chain” as β → ∞. Irreducibility

of the pure-noise chain implies irreducibility of all chains in the family, but

not of the limit chain. A state ω is stochastically stable if limβ→∞ µβ(ω) > 0,

where µβ is the invariant distribution for β > 0.

Example 5. Consider the logit-response dynamics with revision process q. Its

decomposition corresponds to equation 4. That is, the transition mechanisms

QJ available at a state s correspond to the revising sets J , and QJ(s′) =

eβ·UJ (s′,s). The pure-noise chain corresponds to the β = 1 case, and the limit

chain is the best-response dynamics.
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Given a log-linear family, a transition tree is defined analogously to a

revision tree, i.e. a pair (T, γ) where T is a tree such that (ω, ω′) ∈ T only if

Mω,ω′ '= ∅ and γ : T -→ M is such that γ(ω, ω′) ∈ Mω,ω′ for each (ω, ω′) ∈ T .

That is, γ selects a transition mechanism for each link in the tree. Denote

the set of all transition ω-trees by T (ω).

Analogously to Lemma 2 in the Appendix, straightforward but cumber-

some computations allow to give an exact characterization of the invariant

distribution µβ(ω). This in turn allows to establish the analogue of Theorem

2. The waste of a revision tree (T, γ) ∈ T (ω) is defined as

W (T, γ) =
∑

(ω,ω′)∈T

(

max
ω′′∈Ω

Qγ(ω,ω′)(ω
′′, ω)

)

− Qγ(ω,ω′)(ω
′, ω).

The stochastic potential of a state ω is defined as W (ω) = min(T,γ)∈T (ω) W (T, γ).

Theorem 3. Consider a log-linear Markov family. A state ω is stochastically

stable if and only if it minimizes W (ω) among states.

Log-linear Markov families can be used to analyze a large variety of learn-

ing models. In the case of the logit-response dynamics, transition mechanisms

correspond to different groups of players who are updating at the same time.

Transition mechanisms can, however, also be used to model alternative be-

havioral rules of the agents, such as imitation. Varying memory length, pos-

sibly correlated with the complexity of observed histories, or differences in

observability of the others’ actions across players, states and points in time,

could all be captured through appropriately defined transition mechanisms.

In this paper, we have focused on the logit-response dynamics and hence

it is natural to consider log-linear Markov families as a generalization. It

would of course be possible to further generalize the framework to allow for

perturbations which are not of the log-linear form. Such a framework would

allow to encompass e.g. the mistakes model as a particular case (with the

pure noise chain being the mutation process and the limit chain myopic best

reply). Related approaches have been pursued by Myatt and Wallace (2003)
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and Beggs (2005), who consider families of Markov chains with transition

probabilities P β such that the limits limβ→∞− 1
β

lnP β
ω,ω′ are well-defined.19

6 Conclusions

The mistakes model of Kandori, Mailath, and Rob (1993) and Young (1993)

is analytically flexible due to the well-known graph-theoretic characterization

of the stochastically stable states. It has been often criticized, e.g. by Bergin

and Lipman (1996), due to the sensitivity of the results to the specification

of the noise process. Other dynamics, like the logit-response dynamics of

Blume (1993), present more solid foundations but analytical results can be

derived only for particularly convenient frameworks.

Here we have presented a characterization of the stochastically stable

states of a generalization of the logit-response dynamics. This new charac-

terization is in the spirit of the mistakes model. We have illustrated the ap-

proach studying convergence to the set of Nash equilibria of the logit-response

dynamics in general classes of games. Convergence obtains for best-response

potential games but fails for generalized ordinal potential games. The selec-

tion of potential maximizers in exact potential games appears to be a fragile

result, robust neither to generalizations of the considered game class nor to

the specification of revision opportunities.

19Myatt and Wallace (2003) examine stochastic stability in a learning model where

payoffs are perturbed by normally distributed shocks. They show that the addition of

a strictly dominated strategy can change the selection result. Following the approach

in Ellison (2000), Beggs (2005) uses graph-theoretic arguments to obtain general results

on waiting times. See also Dokumaci and Sandholm (2007). Hofbauer and Sandholm

(2007) examine perturbed best-response dynamics (including logit), but concentrate on

the large-population limit.
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A Proof of Theorem 1

The proof proceeds as follows. First, we introduce a few auxiliary concepts.

Then we use these concepts to provide an exact (but cumbersome) charac-

terization of the invariant distribution for fixed, finite β in Lemma 2. Last,

we use this characterization to prove Theorem 1.

Given a graph G on the state space S, a mapping

γ : G -→ P(I)

such that γ(s, s′) ∈ Rs,s′ for each (s, s′) ∈ G is called a revision selection

for G. For each transition in G, a revision selection for G picks exactly one

of the possible revising sets making that transition (potentially) possible.

Thus, a revision tree is a pair (T, γ) made of an s-tree involving only feasible

transitions under the revision process q, and a revision selection γ for T .

Denote the set of all revision selections for a graph G by S(G).

Let M = S × Rq denote the set of all pairs made of one state and one

revising set. Consider a subset N ⊆ M . A realization r for N is a mapping

r : N -→ S such that r(s, J) ∈ RJ
s for all s ∈ S and all J ∈ Rq, J '= ∅. The

set of all realizations for N is denoted R(N). A complete realization is just

a realization for M .

A completion of a revision tree (T, γ) is a complete realization such that

r(s, γ(s, s′)) = s′ for all (s, s′) ∈ T . In words, a completion assigns a feasible

outcome for each state and each possible revising set such that, whenever

the revising set is the one specified by the selection for the (unique) arrow

leaving the state in the tree, the outcome is precisely the state this arrow

leads to. Let C(T, γ) be the set of all completions of (T, γ).

If γ is a revision selection for a tree T and Nγ = {(s, γ(s, s′))|(s, s′) ∈

T}, then R(Nγ) can be interpreted as the set of possible realizations of the

selection γ.
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Lemma 2 (The Decomposition Lemma). The invariant distribution µ of the

logit-response dynamics with revision process q satisfies for each s∗ ∈ S

µ(s∗) ∝
∑

(T,γ)∈T (s∗)

P (T, γ)
∑

r∈C(T,γ)

eQ(r), (5)

where

P (T, γ) =
∏

(s,s′)∈T

qγ(s,s′)

and

Q(r) =
∑

s∈S

∑

J∈Rq

UJ(r(s, J), s).

Proof. Let T0(s
∗) be the set of all s∗-trees. By Freidlin and Wentzell (1988,

Lemma 3.1),

µ(s∗) ∝
∑

T∈T0(s∗)

∏

(s,s′)∈T

Ps,s′.

Note that s-trees including transitions which are not feasible under q con-

tribute zero to the sum above. Fix a tree T ∈ T0(s
∗) such that all transitions

are feasible under q. Using the decomposition of the transition probabilities

(4),

∏

(s,s′)∈T

Ps,s′ =
∏

(s,s′)∈T





∑

J∈Rs,s′

qJ
eUJ(s′,s)

∑

s′′∈RJ
s
eUJ(s′′,s)



 .

Expanding the RHS yields

∑

γ∈S(T )





∏

(s,s′)∈T

qγ(s,s′)
eU

γ(s,s′)(s
′,s)

∑

s′′∈R
γ(s,s′)
s

eU
γ(s,s′)(s

′′,s)



 =

=
∑

γ∈S(T )

(

P (T, γ)
e

P

(s,s′)∈T U
γ(s,s′)(s

′,s)

∏

(s,s′)∈T

∑

s′′∈R
γ(s,s′)
s

eU
γ(s,s′)(s

′′,s)

)

.

Expanding the denominator in the last expression yields

∑

γ∈S(T )



P (T, γ) e
P

(s,s′)∈T U
γ(s,s′)(s

′,s)





∑

r∈R(Nγ )

e
P

(s,s′)∈T U
γ(s,s′)(r(s,γ(s,s′)),s)





−1

 .
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We multiply and divide the last expression by

∑

r∈R(M\Nγ )

e
P

(s,J)∈M\Nγ UJ (r(s,J),s)

and obtain

∑

γ∈S(T )



P (T, γ)





∑

r∈C(T,γ)

e
P

(s,J)∈M UJ (r(s,J),s)









∑

r∈R(M)

e
P

(s,J)∈M UJ(r(s,J),s)





−1

 .

The last term in brackets is a constant which is independent of both γ and T ,

and hence is irrelevant for proportionality of µ(s∗). The proof is completed

observing that
∑

(s,J)∈M UJ(r(s, J), s) = Q(r). !

We are now ready to prove Theorem 1, i.e. stochastically stable states are

those where the waste is minimized across revision trees.

Proof of Theorem 1. Fix a revision process q. Let µβ denote the invariant

distribution of the logit response dynamics for noise level β. By Lemma 2

we have that, for every state s,

µβ(s) ∝
∑

(T,γ)∈T (s)

P (T, γ)
∑

r∈C(T,γ)

eβ·Q(r),

where Q(r) =
∑

s∈S

∑

J∈Rq UJ(r(s, J), s), and P (T, γ) > 0 for all (T, γ). As

β → ∞, only the completion r which maximizes Q(r) among all completions

for all revision trees (T, γ) ∈ T (s) matters for stochastic stability of state

s, since its effect dominates for large β. Specifically, stochastically stable

states, i.e. those satisfying that limβ→∞ µβ(s) > 0, are exactly those states

s ∈ S for which the expression

max
(T,γ)∈T (s)

max
r∈C(T,γ)

Q(r)

is maximal among all states.

For any given revision tree (T, γ), the completion r∗ which maximizes

Q(r) among all completions r ∈ C(T, γ) clearly involves only best responses
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for all revising players on all pairs (s, J) /∈ Nγ , i.e. in state-revising set pairs

not used for transitions in the revision tree.

Let rmax be a complete realization involving only best responses. It follows

that a state s ∈ S maximizes max(T,γ)∈T (s) maxr∈C(T,γ) Q(r) if and only if it

maximizes max(T,γ)∈T (s)

∑

(s,s′)∈T

(

Uγ(s,s′)(s
′, s) − Uγ(s,s′)(r

max(s, γ(s, s′)), s)
)

.

Since
∑

(s,s′)∈T

(

Uγ(s,s′)(s
′, s) − Uγ(s,s′)(r

max(s, γ(s, s′)), s)
)

= −W (T, γ), it fol-

lows that stochastically stable states are those having minimal stochastic

potential min(T,γ)∈T (s) W (T, γ). !
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